Skip to main content
Genetics logoLink to Genetics
. 1998 Apr;148(4):1441–1451. doi: 10.1093/genetics/148.4.1441

The lacI gene as a target for mutation in transgenic rodents and Escherichia coli.

J G de Boer 1, B W Glickman 1
PMCID: PMC1460077  PMID: 9560364

Abstract

The lacI gene has been used extensively for the recovery and analysis of mutations in bacteria with various DNA repair backgrounds and after exposure to a wide variety of mutagens. This has resulted in a large database of information on mutational mechanisms and specificity of many mutagens, as well as the effect of DNA repair background on mutagenicity. Most importantly, knowledge about the mutational sensitivity of the lacI gene is now available, yielding information about mutable nucleotides. This popularity and available knowledge resulted in the use of the lacI gene in transgenic rodents for the study of mutagenesis in mammals, where it resides in approximately 40 repeated copies. As the number of sequenced mutations recovered from these animals increases, we are able to analyze the sites at which mutations have been recovered in great detail and to compare the recovered sites between bacteria and transgenic animals. The nucleotides that code for the DNA-binding domain are nearly saturated with base substitutions. Even after determining the sequences of approximately 10,000 mutations recovered from the animals, however, new sites and new changes are still being recovered. In addition, we compare the nature of deletion mutations between bacteria and animals. Based on the nature of deletions in the animals, we conclude that each deletion occurs in a single copy of the gene.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams W. T., Skopek T. R. Statistical test for the comparison of samples from mutational spectra. J Mol Biol. 1987 Apr 5;194(3):391–396. doi: 10.1016/0022-2836(87)90669-3. [DOI] [PubMed] [Google Scholar]
  2. Bottema C. D., Bottema M. J., Ketterling R. P., Yoon H. S., Janco R. L., Phillips J. A., 3rd, Sommer S. S. Why does the human factor IX gene have a G + C content of 40%? Am J Hum Genet. 1991 Oct;49(4):839–850. [PMC free article] [PubMed] [Google Scholar]
  3. Brenowitz M., Mandal N., Pickar A., Jamison E., Adhya S. DNA-binding properties of a lac repressor mutant incapable of forming tetramers. J Biol Chem. 1991 Jan 15;266(2):1281–1288. [PubMed] [Google Scholar]
  4. Bridges B. A. Mutation in resting cells: the role of endogenous DNA damage. Cancer Surv. 1996;28:155–167. [PubMed] [Google Scholar]
  5. Burns P. A., Allen F. L., Glickman B. W. DNA sequence analysis of mutagenicity and site specificity of ethyl methanesulfonate in Uvr+ and UvrB- strains of Escherichia coli. Genetics. 1986 Aug;113(4):811–819. doi: 10.1093/genetics/113.4.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burns P. A., Gordon A. J., Glickman B. W. Influence of neighbouring base sequence on N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis in the lacI gene of Escherichia coli. J Mol Biol. 1987 Apr 5;194(3):385–390. doi: 10.1016/0022-2836(87)90668-1. [DOI] [PubMed] [Google Scholar]
  7. Burns P. A., Gordon A. J., Kunsmann K., Glickman B. W. Influence of neighboring base sequence on the distribution and repair of N-ethyl-N-nitrosourea-induced lesions in Escherichia coli. Cancer Res. 1988 Aug 15;48(16):4455–4458. [PubMed] [Google Scholar]
  8. Christensen R. B., Christensen J. R., Lawrence C. W. Conjugation-dependent enhancement of induced and spontaneous mutation in the lacI gene of E. coli. Mol Gen Genet. 1985;201(1):35–37. doi: 10.1007/BF00397983. [DOI] [PubMed] [Google Scholar]
  9. Coulondre C., Miller J. H., Farabaugh P. J., Gilbert W. Molecular basis of base substitution hotspots in Escherichia coli. Nature. 1978 Aug 24;274(5673):775–780. doi: 10.1038/274775a0. [DOI] [PubMed] [Google Scholar]
  10. Drake J. W. Spontaneous mutation. Annu Rev Genet. 1991;25:125–146. doi: 10.1146/annurev.ge.25.120191.001013. [DOI] [PubMed] [Google Scholar]
  11. Dycaico M. J., Provost G. S., Kretz P. L., Ransom S. L., Moores J. C., Short J. M. The use of shuttle vectors for mutation analysis in transgenic mice and rats. Mutat Res. 1994 Jun 1;307(2):461–478. doi: 10.1016/0027-5107(94)90257-7. [DOI] [PubMed] [Google Scholar]
  12. Ehrlich M., Zhang X. Y., Inamdar N. M. Spontaneous deamination of cytosine and 5-methylcytosine residues in DNA and replacement of 5-methylcytosine residues with cytosine residues. Mutat Res. 1990 May;238(3):277–286. doi: 10.1016/0165-1110(90)90019-8. [DOI] [PubMed] [Google Scholar]
  13. Farabaugh P. J., Schmeissner U., Hofer M., Miller J. H. Genetic studies of the lac repressor. VII. On the molecular nature of spontaneous hotspots in the lacI gene of Escherichia coli. J Mol Biol. 1978 Dec 25;126(4):847–857. doi: 10.1016/0022-2836(78)90023-2. [DOI] [PubMed] [Google Scholar]
  14. Foster P. L., Eisenstadt E., Miller J. H. Base substitution mutations induced by metabolically activated aflatoxin B1. Proc Natl Acad Sci U S A. 1983 May;80(9):2695–2698. doi: 10.1073/pnas.80.9.2695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Glickman B. W., Horsfall M. J., Gordon A. J., Burns P. A. Nearest neighbor affects G:C to A:T transitions induced by alkylating agents. Environ Health Perspect. 1987 Dec;76:29–32. doi: 10.1289/ehp.877629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gordon A. J., Halliday J. A., Horsfall M. J., Glickman B. W. Spontaneous and 9-aminoacridine-induced frameshift mutagenesis: second-site frameshift mutation within the N-terminal region of the lacI gene of Escherichia coli. Mol Gen Genet. 1991 May;227(1):160–164. doi: 10.1007/BF00260722. [DOI] [PubMed] [Google Scholar]
  17. Gordon A., Halliday J. Transgenic systems for in vivo mutational analysis (Provost et al., Mutation Res., 288 (1993) 133-149) Mutat Res. 1994 Apr 1;306(1):103–105. doi: 10.1016/0027-5107(94)90172-4. [DOI] [PubMed] [Google Scholar]
  18. Gu M., Ahmed A., Wei C., Gorelick N., Glickman B. W. Development of a lambda-based complementation assay for the preliminary localization of lacI mutants from the Big Blue mouse: implications for a DNA-sequencing strategy. Mutat Res. 1994 Jun 1;307(2):533–540. doi: 10.1016/0027-5107(94)90264-x. [DOI] [PubMed] [Google Scholar]
  19. Halliday J. A., Glickman B. W. Mechanisms of spontaneous mutation in DNA repair-proficient Escherichia coli. Mutat Res. 1991 Sep-Oct;250(1-2):55–71. doi: 10.1016/0027-5107(91)90162-h. [DOI] [PubMed] [Google Scholar]
  20. Jego N., Thomas G., Hamelin R. Short direct repeats flanking deletions, and duplicating insertions in p53 gene in human cancers. Oncogene. 1993 Jan;8(1):209–213. [PubMed] [Google Scholar]
  21. Ketterling R. P., Vielhaber E., Sommer S. S. The rates of G:C-->T:A and G:C-->C:G transversions at CpG dinucleotides in the human factor IX gene. Am J Hum Genet. 1994 May;54(5):831–835. [PMC free article] [PubMed] [Google Scholar]
  22. Kleina L. G., Miller J. H. Genetic studies of the lac repressor. XIII. Extensive amino acid replacements generated by the use of natural and synthetic nonsense suppressors. J Mol Biol. 1990 Mar 20;212(2):295–318. doi: 10.1016/0022-2836(90)90126-7. [DOI] [PubMed] [Google Scholar]
  23. Knöll A., Jacobson D. P., Kretz P. L., Lundberg K. S., Short J. M., Sommer S. S. Spontaneous mutations in lacI-containing lambda lysogens derived from transgenic mice: the observed patterns differ in liver and spleen. Mutat Res. 1994 Nov 1;311(1):57–67. doi: 10.1016/0027-5107(94)90073-6. [DOI] [PubMed] [Google Scholar]
  24. Knöll A., Jacobson D. P., Nishino H., Kretz P. L., Short J. M., Sommer S. S. A selectable system for mutation detection in the Big Blue lacI transgenic mouse system: what happens to the mutational spectra over time. Mutat Res. 1996 Jun 10;352(1-2):9–22. doi: 10.1016/0027-5107(95)00159-x. [DOI] [PubMed] [Google Scholar]
  25. Kohler S. W., Provost G. S., Fieck A., Kretz P. L., Bullock W. O., Putman D. L., Sorge J. A., Short J. M. Analysis of spontaneous and induced mutations in transgenic mice using a lambda ZAP/lacI shuttle vector. Environ Mol Mutagen. 1991;18(4):316–321. doi: 10.1002/em.2850180421. [DOI] [PubMed] [Google Scholar]
  26. Kohler S. W., Provost G. S., Fieck A., Kretz P. L., Bullock W. O., Sorge J. A., Putman D. L., Short J. M. Spectra of spontaneous and mutagen-induced mutations in the lacI gene in transgenic mice. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7958–7962. doi: 10.1073/pnas.88.18.7958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Krawczak M., Cooper D. N. Gene deletions causing human genetic disease: mechanisms of mutagenesis and the role of the local DNA sequence environment. Hum Genet. 1991 Mar;86(5):425–441. doi: 10.1007/BF00194629. [DOI] [PubMed] [Google Scholar]
  28. Lambert I. B., Chin T. A., Bryant D. W., Gordon A. J., Glickman B. W., McCalla D. R. The mutational specificity of 2-(2-furyl)-3-(5-nitro-2-furyl)-acrylamide (AF2) in the lacI gene of Escherichia coli. Carcinogenesis. 1991 Jan;12(1):29–34. doi: 10.1093/carcin/12.1.29. [DOI] [PubMed] [Google Scholar]
  29. LeClerc J. E., Christensen J. R., Tata P. V., Christensen R. B., Lawrence C. W. Ultraviolet light induces different spectra of lacI sequence changes in vegetative and conjugating cells of Escherichia coli. J Mol Biol. 1988 Oct 5;203(3):619–633. doi: 10.1016/0022-2836(88)90197-0. [DOI] [PubMed] [Google Scholar]
  30. Lichtenauer-Kaligis E. G., Thijssen J., den Dulk H., van de Putte P., Tasseron-de Jong J. G., Giphart-Gassler M. Comparison of spontaneous hprt mutation spectra at the nucleotide sequence level in the endogenous hprt gene and five other genomic positions. Mutat Res. 1996 Apr 13;351(2):147–155. doi: 10.1016/0027-5107(95)00219-7. [DOI] [PubMed] [Google Scholar]
  31. Lutz W. K. Endogenous genotoxic agents and processes as a basis of spontaneous carcinogenesis. Mutat Res. 1990 May;238(3):287–295. doi: 10.1016/0165-1110(90)90020-c. [DOI] [PubMed] [Google Scholar]
  32. Mauffret O., Rene B., Convert O., Monnot M., Lescot E., Fermandjian S. Drug-DNA interactions: spectroscopic and footprinting studies of site and sequence specificity of elliptinium. Biopolymers. 1991 Oct;31(11):1325–1341. doi: 10.1002/bip.360311110. [DOI] [PubMed] [Google Scholar]
  33. Mazur M., Glickman B. W. Sequence specificity of mutations induced by benzo[a]pyrene-7,8-diol-9,10-epoxide at endogenous aprt gene in CHO cells. Somat Cell Mol Genet. 1988 Jul;14(4):393–400. doi: 10.1007/BF01534647. [DOI] [PubMed] [Google Scholar]
  34. Miller J. H., Ganem D., Lu P., Schmitz A. Genetic studies of the lac repressor. I. Correlation of mutational sites with specific amino acid residues: construction of a colinear gene-protein map. J Mol Biol. 1977 Jan 15;109(2):275–298. doi: 10.1016/s0022-2836(77)80034-x. [DOI] [PubMed] [Google Scholar]
  35. Miller J. H. Mutagenic specificity of ultraviolet light. J Mol Biol. 1985 Mar 5;182(1):45–65. doi: 10.1016/0022-2836(85)90026-9. [DOI] [PubMed] [Google Scholar]
  36. Müller-Hill B., Crapo L., Gilbert W. Mutants that make more lac repressor. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1259–1264. doi: 10.1073/pnas.59.4.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Provost G. S., Short J. M. Characterization of mutations induced by ethylnitrosourea in seminiferous tubule germ cells of transgenic B6C3F1 mice. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6564–6568. doi: 10.1073/pnas.91.14.6564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rogers B. J., Provost G. S., Young R. R., Putman D. L., Short J. M. Intralaboratory optimization and standardization of mutant screening conditions used for a lambda/lacI transgenic mouse mutagenesis assay (I). Mutat Res. 1995 Mar;327(1-2):57–66. doi: 10.1016/0027-5107(94)00081-f. [DOI] [PubMed] [Google Scholar]
  39. SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
  40. Sayle R. A., Milner-White E. J. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995 Sep;20(9):374–374. doi: 10.1016/s0968-0004(00)89080-5. [DOI] [PubMed] [Google Scholar]
  41. Schaaper R. M., Danforth B. N., Glickman B. W. Mechanisms of spontaneous mutagenesis: an analysis of the spectrum of spontaneous mutation in the Escherichia coli lacI gene. J Mol Biol. 1986 May 20;189(2):273–284. doi: 10.1016/0022-2836(86)90509-7. [DOI] [PubMed] [Google Scholar]
  42. Schaaper R. M., Danforth B. N., Glickman B. W. Rapid repeated cloning of mutant lac repressor genes. Gene. 1985;39(2-3):181–189. doi: 10.1016/0378-1119(85)90312-9. [DOI] [PubMed] [Google Scholar]
  43. Schaaper R. M., Dunn R. L., Glickman B. W. Mechanisms of ultraviolet-induced mutation. Mutational spectra in the Escherichia coli lacI gene for a wild-type and an excision-repair-deficient strain. J Mol Biol. 1987 Nov 20;198(2):187–202. doi: 10.1016/0022-2836(87)90305-6. [DOI] [PubMed] [Google Scholar]
  44. Schaaper R. M., Koffel-Schwartz N., Fuchs R. P. N-acetoxy-N-acetyl-2-aminofluorene-induced mutagenesis in the lacI gene of Escherichia coli. Carcinogenesis. 1990 Jul;11(7):1087–1095. doi: 10.1093/carcin/11.7.1087. [DOI] [PubMed] [Google Scholar]
  45. Skopek T. R., Kort K. L., Marino D. R. Relative sensitivity of the endogenous hprt gene and lacI transgene in ENU-treated Big Blue B6C3F1 mice. Environ Mol Mutagen. 1995;26(1):9–15. doi: 10.1002/em.2850260103. [DOI] [PubMed] [Google Scholar]
  46. Skopek T. R., Marino D. R., Kort K. L., Miller J., Pippert T. Synthesis of a lacI gene analogue with reduced CpG content. Mutat Res. 1996 Feb 1;349(2):163–172. doi: 10.1016/0027-5107(95)00204-9. [DOI] [PubMed] [Google Scholar]
  47. Streisinger G., Okada Y., Emrich J., Newton J., Tsugita A., Terzaghi E., Inouye M. Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday. Cold Spring Harb Symp Quant Biol. 1966;31:77–84. doi: 10.1101/sqb.1966.031.01.014. [DOI] [PubMed] [Google Scholar]
  48. Wyborski D. L., Malkhosyan S., Moores J., Perucho M., Short J. M. Development of a rat cell line containing stably integrated copies of a lambda/lacI shuttle vector. Mutat Res. 1995 Apr;334(2):161–165. doi: 10.1016/0165-1161(95)90007-1. [DOI] [PubMed] [Google Scholar]
  49. Yatagai F., Glickman B. W. Specificity of spontaneous mutation in the lacI gene cloned into bacteriophage M13. Mutat Res. 1990 Jan;243(1):21–28. doi: 10.1016/0165-7992(90)90118-4. [DOI] [PubMed] [Google Scholar]
  50. Young R. R., Rogers B. J., Provost G. S., Short J. M., Putman D. L. Interlaboratory comparison: liver spontaneous mutant frequency from lambda/lacI transgenic mice (Big Blue) (II). Mutat Res. 1995 Mar;327(1-2):67–73. doi: 10.1016/0027-5107(94)00080-o. [DOI] [PubMed] [Google Scholar]
  51. de Boer J. G., Erfle H., Walsh D., Holcroft J., Provost J. S., Rogers B., Tindall K. R., Glickman B. W. Spectrum of spontaneous mutations in liver tissue of lacI transgenic mice. Environ Mol Mutagen. 1997;30(3):273–286. [PubMed] [Google Scholar]
  52. de Boer J. G., Glickman B. W. Mutational analysis of the structure and function of the adenine phosphoribosyltransferase enzyme of Chinese hamster. J Mol Biol. 1991 Sep 5;221(1):163–174. doi: 10.1016/0022-2836(91)80212-d. [DOI] [PubMed] [Google Scholar]
  53. de Boer J. G. Software package for the management of sequencing projects using lacI transgenic animals. Environ Mol Mutagen. 1995;25(3):256–262. doi: 10.1002/em.2850250312. [DOI] [PubMed] [Google Scholar]
  54. el Antri S., Mauffret O., Monnot M., Lescot E., Convert O., Fermandjian S. Structural deviations at CpG provide a plausible explanation for the high frequency of mutation at this site. Phosphorus nuclear magnetic resonance and circular dichroism studies. J Mol Biol. 1993 Mar 20;230(2):373–378. doi: 10.1006/jmbi.1993.1153. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES