Skip to main content
Genetics logoLink to Genetics
. 1998 Apr;148(4):1627–1635. doi: 10.1093/genetics/148.4.1627

Reversion of the tyrosine ochre strain Escherichia coli WU3610 under starvation conditions depends on a new gene tas.

A R Timms 1, B A Bridges 1
PMCID: PMC1460079  PMID: 9560382

Abstract

When 3 x 10(8) bacteria of the Escherichia coli tyrA14(oc) leu308(am) strain WU3610 are plated on glucose salts agar supplemented with leucine only, colonies of slow-growing Tyr+ suppressor mutants begin to appear after about a week and increase in numbers roughly linearly with time thereafter (stationary phase or starvation-associated mutation). From a library constructed from two of these mutants, a clone was obtained that suppressed the tyrosine requirement of WU3610 when present on a multicopy plasmid. The activity was identified to an open reading frame we call tas, the sequence for which has homology with a variety of known genes with aldo-keto reductase activity. The activity of tas complements the prephenate dehydrogenase dysfunction of tyrA14 (the chorismate mutase activity of tyrA possibly being still functional). A strain deleted for tas showed no spontaneous mutation under starvation conditions. Whereas neither tas+ nor tas bacteria showed any increase in viable or total count when plated under conditions of tyrosine starvation at 3 x 10(8) cells per plate, at lower density (approximately 10(7) per plate) tas+ but not tas bacteria showed considerable residual growth. We suggest that the single copy of tas present in WU3610 allows cryptic cell or DNA turnover under conditions of tyrosine starvation and that this is an essential prerequisite for starvation-associated mutation in this system. The target gene for mutation is not tas, although an increase in the expression of this gene, for example, resulting from a suppressor mutation affecting supercoiling, could be responsible for the slow-growing Tyr+ phenotype.

Full Text

The Full Text of this article is available as a PDF (131.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. P., Roth J. R. Tandem genetic duplications in phage and bacteria. Annu Rev Microbiol. 1977;31:473–505. doi: 10.1146/annurev.mi.31.100177.002353. [DOI] [PubMed] [Google Scholar]
  2. Au K. G., Clark S., Miller J. H., Modrich P. Escherichia coli mutY gene encodes an adenine glycosylase active on G-A mispairs. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8877–8881. doi: 10.1073/pnas.86.22.8877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baltz R. H., Bingham P. M., Drake J. W. Heat mutagenesis in bacteriophage T4: the transition pathway. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1269–1273. doi: 10.1073/pnas.73.4.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bingham P. M., Baltz R. H., Ripley L. S., Drake J. W. Heat mutagenesis in bacteriophage T4: the transversion pathway. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4159–4163. doi: 10.1073/pnas.73.11.4159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boiteux S., O'Connor T. R., Laval J. Formamidopyrimidine-DNA glycosylase of Escherichia coli: cloning and sequencing of the fpg structural gene and overproduction of the protein. EMBO J. 1987 Oct;6(10):3177–3183. doi: 10.1002/j.1460-2075.1987.tb02629.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boiteux S., O'Connor T. R., Lederer F., Gouyette A., Laval J. Homogeneous Escherichia coli FPG protein. A DNA glycosylase which excises imidazole ring-opened purines and nicks DNA at apurinic/apyrimidinic sites. J Biol Chem. 1990 Mar 5;265(7):3916–3922. [PubMed] [Google Scholar]
  7. Boyle J. M., Symonds N. Radiation-sensitive mutants of T4D. I. T4y: a new radiation-sensitive mutant; effect of the mutation on radiation survival, growth and recombination. Mutat Res. 1969 Nov-Dec;8(3):431–439. doi: 10.1016/0027-5107(69)90060-8. [DOI] [PubMed] [Google Scholar]
  8. Bridges B. A., Sekiguchi M., Tajiri T. Effect of mutY and mutM/fpg-1 mutations on starvation-associated mutation in Escherichia coli: implications for the role of 7,8-dihydro-8-oxoguanine. Mol Gen Genet. 1996 Jun 12;251(3):352–357. doi: 10.1007/BF02172526. [DOI] [PubMed] [Google Scholar]
  9. Bridges B. A. Spontaneous mutation in stationary-phase Escherichia coli WP2 carrying various DNA repair alleles. Mutat Res. 1993 Jul;302(3):173–176. doi: 10.1016/0165-7992(93)90045-w. [DOI] [PubMed] [Google Scholar]
  10. Bridges B. A. Starvation-associated mutation in Escherichia coli: a spontaneous lesion hypothesis for "directed" mutation. Mutat Res. 1994 May 1;307(1):149–156. doi: 10.1016/0027-5107(94)90287-9. [DOI] [PubMed] [Google Scholar]
  11. Bridges B. A., Timms A. R. Mutation in Escherichia coli under starvation conditions: a new pathway leading to small deletions in strains defective in mismatch correction. EMBO J. 1997 Jun 2;16(11):3349–3356. doi: 10.1093/emboj/16.11.3349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cairns J., Overbaugh J., Miller S. The origin of mutants. Nature. 1988 Sep 8;335(6186):142–145. doi: 10.1038/335142a0. [DOI] [PubMed] [Google Scholar]
  13. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Galitski T., Roth J. R. A search for a general phenomenon of adaptive mutability. Genetics. 1996 Jun;143(2):645–659. doi: 10.1093/genetics/143.2.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hall B. G. Spontaneous point mutations that occur more often when advantageous than when neutral. Genetics. 1990 Sep;126(1):5–16. doi: 10.1093/genetics/126.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hamilton C. M., Aldea M., Washburn B. K., Babitzke P., Kushner S. R. New method for generating deletions and gene replacements in Escherichia coli. J Bacteriol. 1989 Sep;171(9):4617–4622. doi: 10.1128/jb.171.9.4617-4622.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hudson G. S., Davidson B. E. Nucleotide sequence and transcription of the phenylalanine and tyrosine operons of Escherichia coli K12. J Mol Biol. 1984 Dec 25;180(4):1023–1051. doi: 10.1016/0022-2836(84)90269-9. [DOI] [PubMed] [Google Scholar]
  19. Hultman T., Ståhl S., Hornes E., Uhlén M. Direct solid phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Res. 1989 Jul 11;17(13):4937–4946. doi: 10.1093/nar/17.13.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kast P., Asif-Ullah M., Jiang N., Hilvert D. Exploring the active site of chorismate mutase by combinatorial mutagenesis and selection: the importance of electrostatic catalysis. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5043–5048. doi: 10.1073/pnas.93.10.5043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kricker M. C., Drake J. W. Heat mutagenesis in bacteriophage T4: another walk down the transversion pathway. J Bacteriol. 1990 Jun;172(6):3037–3039. doi: 10.1128/jb.172.6.3037-3039.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Li B. H., Larsen S., Pratt V., Bockrath R. Diverse backmutations at an ochre defect in the tyrA gene sequence of E. coli B/r. Mutat Res. 1991 Jan;246(1):139–149. doi: 10.1016/0027-5107(91)90116-6. [DOI] [PubMed] [Google Scholar]
  23. Mittler J. E., Lenski R. E. Experimental evidence for an alternative to directed mutation in the bgl operon. Nature. 1992 Apr 2;356(6368):446–448. doi: 10.1038/356446a0. [DOI] [PubMed] [Google Scholar]
  24. Moriya M., Grollman A. P. Mutations in the mutY gene of Escherichia coli enhance the frequency of targeted G:C-->T:a transversions induced by a single 8-oxoguanine residue in single-stranded DNA. Mol Gen Genet. 1993 May;239(1-2):72–76. doi: 10.1007/BF00281603. [DOI] [PubMed] [Google Scholar]
  25. Nghiem Y., Cabrera M., Cupples C. G., Miller J. H. The mutY gene: a mutator locus in Escherichia coli that generates G.C----T.A transversions. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2709–2713. doi: 10.1073/pnas.85.8.2709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Osborn M., Person S. Characterization of revertants of E. coli WU36-10 and WP2 using amber mutants and an ochre mutant of bacteriphage T4. Mutat Res. 1967 Jul-Aug;4(4):504–507. doi: 10.1016/0027-5107(67)90013-9. [DOI] [PubMed] [Google Scholar]
  27. Prival M. J., Cebula T. A. Adaptive mutation and slow-growing revertants of an Escherichia coli lacZ amber mutant. Genetics. 1996 Dec;144(4):1337–1341. doi: 10.1093/genetics/144.4.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. RYAN F. J., NAKADA D., SCHNEIDER M. J. Is DNA replication a necessary condition for spontaneous mutation? Z Vererbungsl. 1961;92:38–41. doi: 10.1007/BF01854099. [DOI] [PubMed] [Google Scholar]
  29. Rood J. I., Perrot B., Heyde E., Morrison J. F. Characterization of monofunctional chorismate mutase/prephenate dehydrogenase enzymes obtained via mutagenesis of recombinant plasmids in vitro. Eur J Biochem. 1982 Jun;124(3):513–519. doi: 10.1111/j.1432-1033.1982.tb06623.x. [DOI] [PubMed] [Google Scholar]
  30. Ryan F. J. Spontaneous Mutation in Non-Dividing Bacteria. Genetics. 1955 Sep;40(5):726–738. doi: 10.1093/genetics/40.5.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shibutani S., Takeshita M., Grollman A. P. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991 Jan 31;349(6308):431–434. doi: 10.1038/349431a0. [DOI] [PubMed] [Google Scholar]
  32. Tlsty T. D., Albertini A. M., Miller J. H. Gene amplification in the lac region of E. coli. Cell. 1984 May;37(1):217–224. doi: 10.1016/0092-8674(84)90317-9. [DOI] [PubMed] [Google Scholar]
  33. Wood M. L., Dizdaroglu M., Gajewski E., Essigmann J. M. Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry. 1990 Jul 31;29(30):7024–7032. doi: 10.1021/bi00482a011. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES