Skip to main content
Genetics logoLink to Genetics
. 1998 Apr;148(4):1845–1863. doi: 10.1093/genetics/148.4.1845

Second-site noncomplementation identifies genomic regions required for Drosophila nonmuscle myosin function during morphogenesis.

S R Halsell 1, D P Kiehart 1
PMCID: PMC1460088  PMID: 9560399

Abstract

Drosophila is an ideal metazoan model system for analyzing the role of nonmuscle myosin-II (henceforth, myosin) during development. In Drosophila, myosin function is required for cytokinesis and morphogenesis driven by cell migration and/or cell shape changes during oogenesis, embryogenesis, larval development and pupal metamorphosis. The mechanisms that regulate myosin function and the supramolecular structures into which myosin incorporates have not been systematically characterized. The genetic screens described here identify genomic regions that uncover loci that facilitate myosin function. The nonmuscle myosin heavy chain is encoded by a single locus, zipper. Contiguous chromosomal deficiencies that represent approximately 70% of the euchromatic genome were screened for genetic interactions with two recessive lethal alleles of zipper in a second-site noncomplementation assay for the malformed phenotype. Malformation in the adult leg reflects aberrations in cell shape changes driven by myosin-based contraction during leg morphogenesis. Of the 158 deficiencies tested, 47 behaved as second-site noncomplementors of zipper. Two of the deficiencies are strong interactors, 17 are intermediate and 28 are weak. Finer genetic mapping reveals that mutations in cytoplasmic tropomyosin and viking (collagen IV) behave as second-site noncomplementors of zipper during leg morphogenesis and that zipper function requires a previously uncharacterized locus, E3.10/J3.8, for leg morphogenesis and viability.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appel L. F., Prout M., Abu-Shumays R., Hammonds A., Garbe J. C., Fristrom D., Fristrom J. The Drosophila Stubble-stubbloid gene encodes an apparent transmembrane serine protease required for epithelial morphogenesis. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4937–4941. doi: 10.1073/pnas.90.11.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balasubramanian M. K., Helfman D. M., Hemmingsen S. M. A new tropomyosin essential for cytokinesis in the fission yeast S. pombe. Nature. 1992 Nov 5;360(6399):84–87. doi: 10.1038/360084a0. [DOI] [PubMed] [Google Scholar]
  3. Bewley G. C., Mackay W. J., Cook J. L. Temporal variation for the expression of catalase in Drosophila melanogaster: correlations between rates of enzyme synthesis and levels of translatable catalase-messenger RNA. Genetics. 1986 Aug;113(4):919–938. doi: 10.1093/genetics/113.4.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bilder D., Scott M. P. Genomic regions required for morphogenesis of the Drosophila embryonic midgut. Genetics. 1995 Nov;141(3):1087–1100. doi: 10.1093/genetics/141.3.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burtis K. C., Thummel C. S., Jones C. W., Karim F. D., Hogness D. S. The Drosophila 74EF early puff contains E74, a complex ecdysone-inducible gene that encodes two ets-related proteins. Cell. 1990 Apr 6;61(1):85–99. doi: 10.1016/0092-8674(90)90217-3. [DOI] [PubMed] [Google Scholar]
  6. Condic M. L., Fristrom D., Fristrom J. W. Apical cell shape changes during Drosophila imaginal leg disc elongation: a novel morphogenetic mechanism. Development. 1991 Jan;111(1):23–33. doi: 10.1242/dev.111.1.23. [DOI] [PubMed] [Google Scholar]
  7. Cutforth T., Rubin G. M. Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila. Cell. 1994 Jul 1;77(7):1027–1036. doi: 10.1016/0092-8674(94)90442-1. [DOI] [PubMed] [Google Scholar]
  8. Côté S., Preiss A., Haller J., Schuh R., Kienlin A., Seifert E., Jäckle H. The gooseberry-zipper region of Drosophila: five genes encode different spatially restricted transcripts in the embryo. EMBO J. 1987 Sep;6(9):2793–2801. doi: 10.1002/j.1460-2075.1987.tb02575.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DiBello P. R., Withers D. A., Bayer C. A., Fristrom J. W., Guild G. M. The Drosophila Broad-Complex encodes a family of related proteins containing zinc fingers. Genetics. 1991 Oct;129(2):385–397. doi: 10.1093/genetics/129.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edwards K. A., Chang X. J., Kiehart D. P. Essential light chain of Drosophila nonmuscle myosin II. J Muscle Res Cell Motil. 1995 Oct;16(5):491–498. doi: 10.1007/BF00126433. [DOI] [PubMed] [Google Scholar]
  11. Edwards K. A., Kiehart D. P. Drosophila nonmuscle myosin II has multiple essential roles in imaginal disc and egg chamber morphogenesis. Development. 1996 May;122(5):1499–1511. doi: 10.1242/dev.122.5.1499. [DOI] [PubMed] [Google Scholar]
  12. Erdélyi M., Michon A. M., Guichet A., Glotzer J. B., Ephrussi A. Requirement for Drosophila cytoplasmic tropomyosin in oskar mRNA localization. Nature. 1995 Oct 12;377(6549):524–527. doi: 10.1038/377524a0. [DOI] [PubMed] [Google Scholar]
  13. Fessler L. I., Condic M. L., Nelson R. E., Fessler J. H., Fristrom J. W. Site-specific cleavage of basement membrane collagen IV during Drosophila metamorphosis. Development. 1993 Mar;117(3):1061–1069. doi: 10.1242/dev.117.3.1061. [DOI] [PubMed] [Google Scholar]
  14. Fletcher J. C., Burtis K. C., Hogness D. S., Thummel C. S. The Drosophila E74 gene is required for metamorphosis and plays a role in the polytene chromosome puffing response to ecdysone. Development. 1995 May;121(5):1455–1465. doi: 10.1242/dev.121.5.1455. [DOI] [PubMed] [Google Scholar]
  15. Fletcher J. C., Thummel C. S. The ecdysone-inducible Broad-complex and E74 early genes interact to regulate target gene transcription and Drosophila metamorphosis. Genetics. 1995 Nov;141(3):1025–1035. doi: 10.1093/genetics/141.3.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fyrberg E. A., Bond B. J., Hershey N. D., Mixter K. S., Davidson N. The actin genes of Drosophila: protein coding regions are highly conserved but intron positions are not. Cell. 1981 Apr;24(1):107–116. doi: 10.1016/0092-8674(81)90506-7. [DOI] [PubMed] [Google Scholar]
  17. Gotwals P. J., Fristrom J. W. Three neighboring genes interact with the Broad-Complex and the Stubble-stubbloid locus to affect imaginal disc morphogenesis in Drosophila. Genetics. 1991 Apr;127(4):747–759. doi: 10.1093/genetics/127.4.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Guo X. D., Johnson J. J., Kramer J. M. Embryonic lethality caused by mutations in basement membrane collagen of C. elegans. Nature. 1991 Feb 21;349(6311):707–709. doi: 10.1038/349707a0. [DOI] [PubMed] [Google Scholar]
  19. Hanke P. D., Storti R. V. The Drosophila melanogaster tropomyosin II gene produces multiple proteins by use of alternative tissue-specific promoters and alternative splicing. Mol Cell Biol. 1988 Sep;8(9):3591–3602. doi: 10.1128/mcb.8.9.3591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Karess R. E., Chang X. J., Edwards K. A., Kulkarni S., Aguilera I., Kiehart D. P. The regulatory light chain of nonmuscle myosin is encoded by spaghetti-squash, a gene required for cytokinesis in Drosophila. Cell. 1991 Jun 28;65(7):1177–1189. doi: 10.1016/0092-8674(91)90013-o. [DOI] [PubMed] [Google Scholar]
  21. Kernan M. J., Kuroda M. I., Kreber R., Baker B. S., Ganetzky B. napts, a mutation affecting sodium channel activity in Drosophila, is an allele of mle, a regulator of X chromosome transcription. Cell. 1991 Sep 6;66(5):949–959. doi: 10.1016/0092-8674(91)90440-a. [DOI] [PubMed] [Google Scholar]
  22. Kiehart D. P., Lutz M. S., Chan D., Ketchum A. S., Laymon R. A., Nguyen B., Goldstein L. S. Identification of the gene for fly non-muscle myosin heavy chain: Drosophila myosin heavy chains are encoded by a gene family. EMBO J. 1989 Mar;8(3):913–922. doi: 10.1002/j.1460-2075.1989.tb03452.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kiss I., Beaton A. H., Tardiff J., Fristrom D., Fristrom J. W. Interactions and developmental effects of mutations in the Broad-Complex of Drosophila melanogaster. Genetics. 1988 Feb;118(2):247–259. doi: 10.1093/genetics/118.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Knecht D. A., Loomis W. F. Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoideum. Science. 1987 May 29;236(4805):1081–1086. doi: 10.1126/science.3576221. [DOI] [PubMed] [Google Scholar]
  25. Knecht D. A., Shelden E. Three-dimensional localization of wild-type and myosin II mutant cells during morphogenesis of Dictyostelium. Dev Biol. 1995 Aug;170(2):434–444. doi: 10.1006/dbio.1995.1227. [DOI] [PubMed] [Google Scholar]
  26. Kojima S., Mishima M., Mabuchi I., Hotta Y. A single Drosophila melanogaster myosin light chain kinase gene produces multiple isoforms whose activities are differently regulated. Genes Cells. 1996 Sep;1(9):855–871. doi: 10.1046/j.1365-2443.1996.720272.x. [DOI] [PubMed] [Google Scholar]
  27. Lefevre G., Johnson T. K. Evidence for a Sex-Linked Haplo-Inviable Locus in the Cut-Singed Region of DROSOPHILA MELANOGASTER. Genetics. 1973 Aug;74(4):633–645. doi: 10.1093/genetics/74.4.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Liu H. P., Bretscher A. Disruption of the single tropomyosin gene in yeast results in the disappearance of actin cables from the cytoskeleton. Cell. 1989 Apr 21;57(2):233–242. doi: 10.1016/0092-8674(89)90961-6. [DOI] [PubMed] [Google Scholar]
  29. Manstein D. J., Titus M. A., De Lozanne A., Spudich J. A. Gene replacement in Dictyostelium: generation of myosin null mutants. EMBO J. 1989 Mar;8(3):923–932. doi: 10.1002/j.1460-2075.1989.tb03453.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Natzle J. E., Monson J. M., McCarthy B. J. Cytogenetic location and expression of collagen-like genes in Drosophila. Nature. 1982 Mar 25;296(5855):368–371. doi: 10.1038/296368a0. [DOI] [PubMed] [Google Scholar]
  31. Pauli D., Oliver B., Mahowald A. P. Identification of regions interacting with ovoD mutations: potential new genes involved in germline sex determination or differentiation in Drosophila melanogaster. Genetics. 1995 Feb;139(2):713–732. doi: 10.1093/genetics/139.2.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Saxton W. M., Hicks J., Goldstein L. S., Raff E. C. Kinesin heavy chain is essential for viability and neuromuscular functions in Drosophila, but mutants show no defects in mitosis. Cell. 1991 Mar 22;64(6):1093–1102. doi: 10.1016/0092-8674(91)90264-y. [DOI] [PubMed] [Google Scholar]
  33. Shelden E., Knecht D. A. Dictyostelium cell shape generation requires myosin II. Cell Motil Cytoskeleton. 1996;35(1):59–67. doi: 10.1002/(SICI)1097-0169(1996)35:1<59::AID-CM5>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  34. Sibley M. H., Johnson J. J., Mello C. C., Kramer J. M. Genetic identification, sequence, and alternative splicing of the Caenorhabditis elegans alpha 2(IV) collagen gene. J Cell Biol. 1993 Oct;123(1):255–264. doi: 10.1083/jcb.123.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Smith A. V., King J. A., Orr-Weaver T. L. Identification of genomic regions required for DNA replication during Drosophila embryogenesis. Genetics. 1993 Nov;135(3):817–829. doi: 10.1093/genetics/135.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sweeney F. P., Pocklington M. J., Orr E. The yeast type II myosin heavy chain: analysis of its predicted polypeptide sequence. J Muscle Res Cell Motil. 1991 Feb;12(1):61–68. doi: 10.1007/BF01781175. [DOI] [PubMed] [Google Scholar]
  37. Tetzlaff M. T., Jäckle H., Pankratz M. J. Lack of Drosophila cytoskeletal tropomyosin affects head morphogenesis and the accumulation of oskar mRNA required for germ cell formation. EMBO J. 1996 Mar 15;15(6):1247–1254. [PMC free article] [PubMed] [Google Scholar]
  38. Thummel C. S., Burtis K. C., Hogness D. S. Spatial and temporal patterns of E74 transcription during Drosophila development. Cell. 1990 Apr 6;61(1):101–111. doi: 10.1016/0092-8674(90)90218-4. [DOI] [PubMed] [Google Scholar]
  39. Williams-Masson E. M., Malik A. N., Hardin J. An actin-mediated two-step mechanism is required for ventral enclosure of the C. elegans hypodermis. Development. 1997 Aug;124(15):2889–2901. doi: 10.1242/dev.124.15.2889. [DOI] [PubMed] [Google Scholar]
  40. Williams D. S., Hallett M. A., Arikawa K. Association of myosin with the connecting cilium of rod photoreceptors. J Cell Sci. 1992 Sep;103(Pt 1):183–190. doi: 10.1242/jcs.103.1.183. [DOI] [PubMed] [Google Scholar]
  41. Wohlwill A. D., Bonner J. J. Genetic analysis of chromosome region 63 of Drosophila melanogaster. Genetics. 1991 Aug;128(4):763–775. doi: 10.1093/genetics/128.4.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yasothornsrikul S., Davis W. J., Cramer G., Kimbrell D. A., Dearolf C. R. viking: identification and characterization of a second type IV collagen in Drosophila. Gene. 1997 Oct 1;198(1-2):17–25. doi: 10.1016/s0378-1119(97)00274-6. [DOI] [PubMed] [Google Scholar]
  43. Young P. E., Pesacreta T. C., Kiehart D. P. Dynamic changes in the distribution of cytoplasmic myosin during Drosophila embryogenesis. Development. 1991 Jan;111(1):1–14. doi: 10.1242/dev.111.1.1. [DOI] [PubMed] [Google Scholar]
  44. Young P. E., Richman A. M., Ketchum A. S., Kiehart D. P. Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. Genes Dev. 1993 Jan;7(1):29–41. doi: 10.1101/gad.7.1.29. [DOI] [PubMed] [Google Scholar]
  45. Zhao D. B., Côté S., Jähnig F., Haller J., Jäckle H. Zipper encodes a putative integral membrane protein required for normal axon patterning during Drosophila neurogenesis. EMBO J. 1988 Apr;7(4):1115–1119. doi: 10.1002/j.1460-2075.1988.tb02920.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES