Skip to main content
Genetics logoLink to Genetics
. 1998 Apr;148(4):1951–1961. doi: 10.1093/genetics/148.4.1951

Molecular genetic dissection of mouse unconventional myosin-VA: head region mutations.

J D Huang 1, M J Cope 1, V Mermall 1, M C Strobel 1, J Kendrick-Jones 1, L B Russell 1, M S Mooseker 1, N G Copeland 1, N A Jenkins 1
PMCID: PMC1460099  PMID: 9560408

Abstract

The mouse dilute (d) locus encodes unconventional myosin-VA (MyoVA). Mice carrying null alleles of dilute have a lightened coat color and die from a neurological disorder resembling ataxia and opisthotonus within three weeks of birth. Immunological and ultrastructural studies suggest that MyoVA is involved in the transport of melanosomes in melanocytes and smooth endoplasmic reticulum in cerebellar Purkinje cells. In studies described here, we have used an RT-PCR-based sequencing approach to identify the mutations responsible for 17 viable dilute alleles that vary in their effects on coat color and the nervous system. Seven of these mutations mapped to the MyoVA motor domain and are reported here. Crystallographic modeling and mutant expression studies were used to predict how these mutations might affect motor domain function and to attempt to correlate these effects with the mutant phenotype.

Full Text

The Full Text of this article is available as a PDF (9.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avraham K. B., Hasson T., Steel K. P., Kingsley D. M., Russell L. B., Mooseker M. S., Copeland N. G., Jenkins N. A. The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet. 1995 Dec;11(4):369–375. doi: 10.1038/ng1295-369. [DOI] [PubMed] [Google Scholar]
  2. Cheney R. E., O'Shea M. K., Heuser J. E., Coelho M. V., Wolenski J. S., Espreafico E. M., Forscher P., Larson R. E., Mooseker M. S. Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell. 1993 Oct 8;75(1):13–23. doi: 10.1016/S0092-8674(05)80080-7. [DOI] [PubMed] [Google Scholar]
  3. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dekker-Ohno K., Hayasaka S., Takagishi Y., Oda S., Wakasugi N., Mikoshiba K., Inouye M., Yamamura H. Endoplasmic reticulum is missing in dendritic spines of Purkinje cells of the ataxic mutant rat. Brain Res. 1996 Apr 1;714(1-2):226–230. doi: 10.1016/0006-8993(95)01560-4. [DOI] [PubMed] [Google Scholar]
  5. Epstein N. D., Cohn G. M., Cyran F., Fananapazir L. Differences in clinical expression of hypertrophic cardiomyopathy associated with two distinct mutations in the beta-myosin heavy chain gene. A 908Leu----Val mutation and a 403Arg----Gln mutation. Circulation. 1992 Aug;86(2):345–352. doi: 10.1161/01.cir.86.2.345. [DOI] [PubMed] [Google Scholar]
  6. Espreafico E. M., Cheney R. E., Matteoli M., Nascimento A. A., De Camilli P. V., Larson R. E., Mooseker M. S. Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains. J Cell Biol. 1992 Dec;119(6):1541–1557. doi: 10.1083/jcb.119.6.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Evans L. L., Hammer J., Bridgman P. C. Subcellular localization of myosin V in nerve growth cones and outgrowth from dilute-lethal neurons. J Cell Sci. 1997 Feb;110(Pt 4):439–449. doi: 10.1242/jcs.110.4.439. [DOI] [PubMed] [Google Scholar]
  8. Fananapazir L., Dalakas M. C., Cyran F., Cohn G., Epstein N. D. Missense mutations in the beta-myosin heavy-chain gene cause central core disease in hypertrophic cardiomyopathy. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3993–3997. doi: 10.1073/pnas.90.9.3993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fisher A. J., Smith C. A., Thoden J. B., Smith R., Sutoh K., Holden H. M., Rayment I. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. Biochemistry. 1995 Jul 18;34(28):8960–8972. doi: 10.1021/bi00028a004. [DOI] [PubMed] [Google Scholar]
  10. Gibson F., Walsh J., Mburu P., Varela A., Brown K. A., Antonio M., Beisel K. W., Steel K. P., Brown S. D. A type VII myosin encoded by the mouse deafness gene shaker-1. Nature. 1995 Mar 2;374(6517):62–64. doi: 10.1038/374062a0. [DOI] [PubMed] [Google Scholar]
  11. Hasson T., Mooseker M. S. Porcine myosin-VI: characterization of a new mammalian unconventional myosin. J Cell Biol. 1994 Oct;127(2):425–440. doi: 10.1083/jcb.127.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huang J. D., Mermall V., Strobel M. C., Russell L. B., Mooseker M. S., Copeland N. G., Jenkins N. A. Molecular genetic dissection of mouse unconventional myosin-VA: tail region mutations. Genetics. 1998 Apr;148(4):1963–1972. doi: 10.1093/genetics/148.4.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Langford G. M. Actin- and microtubule-dependent organelle motors: interrelationships between the two motility systems. Curr Opin Cell Biol. 1995 Feb;7(1):82–88. doi: 10.1016/0955-0674(95)80048-4. [DOI] [PubMed] [Google Scholar]
  15. Liu X. Z., Walsh J., Mburu P., Kendrick-Jones J., Cope M. J., Steel K. P., Brown S. D. Mutations in the myosin VIIA gene cause non-syndromic recessive deafness. Nat Genet. 1997 Jun;16(2):188–190. doi: 10.1038/ng0697-188. [DOI] [PubMed] [Google Scholar]
  16. Marker P. C., Seung K., Bland A. E., Russell L. B., Kingsley D. M. Spectrum of Bmp5 mutations from germline mutagenesis experiments in mice. Genetics. 1997 Feb;145(2):435–443. doi: 10.1093/genetics/145.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mercer J. A., Seperack P. K., Strobel M. C., Copeland N. G., Jenkins N. A. Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature. 1991 Feb 21;349(6311):709–713. doi: 10.1038/349709a0. [DOI] [PubMed] [Google Scholar]
  18. Provance D. W., Jr, Wei M., Ipe V., Mercer J. A. Cultured melanocytes from dilute mutant mice exhibit dendritic morphology and altered melanosome distribution. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14554–14558. doi: 10.1073/pnas.93.25.14554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rayment I., Holden H. M., Sellers J. R., Fananapazir L., Epstein N. D. Structural interpretation of the mutations in the beta-cardiac myosin that have been implicated in familial hypertrophic cardiomyopathy. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3864–3868. doi: 10.1073/pnas.92.9.3864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
  21. Rayment I., Rypniewski W. R., Schmidt-Bäse K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. doi: 10.1126/science.8316857. [DOI] [PubMed] [Google Scholar]
  22. Russell L. B. Definition of functional units in a small chromosomal segment of the mouse and its use in interpreting the nature of radiation-induced mutations. Mutat Res. 1971 Jan;11(1):107–123. doi: 10.1016/0027-5107(71)90036-4. [DOI] [PubMed] [Google Scholar]
  23. Russell L. B., Russell W. L. A Study of the Physiological Genetics of Coat Color in the Mouse by Means of the Dopa Reaction in Frozen Sections of Skin. Genetics. 1948 May;33(3):237–262. doi: 10.1093/genetics/33.3.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Seperack P. K., Mercer J. A., Strobel M. C., Copeland N. G., Jenkins N. A. Retroviral sequences located within an intron of the dilute gene alter dilute expression in a tissue-specific manner. EMBO J. 1995 May 15;14(10):2326–2332. doi: 10.1002/j.1460-2075.1995.tb07227.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shibuya T., Morimoto K. A review of the genotoxicity of 1-ethyl-1-nitrosourea. Mutat Res. 1993 Jul;297(1):3–38. doi: 10.1016/0165-1110(93)90005-8. [DOI] [PubMed] [Google Scholar]
  26. Smith C. A., Rayment I. X-ray structure of the magnesium(II)-pyrophosphate complex of the truncated head of Dictyostelium discoideum myosin to 2.7 A resolution. Biochemistry. 1995 Jul 18;34(28):8973–8981. doi: 10.1021/bi00028a005. [DOI] [PubMed] [Google Scholar]
  27. Smith C. A., Rayment I. X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution. Biochemistry. 1996 Apr 30;35(17):5404–5417. doi: 10.1021/bi952633+. [DOI] [PubMed] [Google Scholar]
  28. Strobel M. C., Seperack P. K., Copeland N. G., Jenkins N. A. Molecular analysis of two mouse dilute locus deletion mutations: spontaneous dilute lethal20J and radiation-induced dilute prenatal lethal Aa2 alleles. Mol Cell Biol. 1990 Feb;10(2):501–509. doi: 10.1128/mcb.10.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Takagishi Y., Oda S., Hayasaka S., Dekker-Ohno K., Shikata T., Inouye M., Yamamura H. The dilute-lethal (dl) gene attacks a Ca2+ store in the dendritic spine of Purkinje cells in mice. Neurosci Lett. 1996 Sep 13;215(3):169–172. doi: 10.1016/0304-3940(96)12967-0. [DOI] [PubMed] [Google Scholar]
  30. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vikstrom K. L., Leinwand L. A. Contractile protein mutations and heart disease. Curr Opin Cell Biol. 1996 Feb;8(1):97–105. doi: 10.1016/s0955-0674(96)80053-6. [DOI] [PubMed] [Google Scholar]
  32. Weil D., Blanchard S., Kaplan J., Guilford P., Gibson F., Walsh J., Mburu P., Varela A., Levilliers J., Weston M. D. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature. 1995 Mar 2;374(6517):60–61. doi: 10.1038/374060a0. [DOI] [PubMed] [Google Scholar]
  33. Weil D., Küssel P., Blanchard S., Lévy G., Levi-Acobas F., Drira M., Ayadi H., Petit C. The autosomal recessive isolated deafness, DFNB2, and the Usher 1B syndrome are allelic defects of the myosin-VIIA gene. Nat Genet. 1997 Jun;16(2):191–193. doi: 10.1038/ng0697-191. [DOI] [PubMed] [Google Scholar]
  34. Weston M. D., Kelley P. M., Overbeck L. D., Wagenaar M., Orten D. J., Hasson T., Chen Z. Y., Corey D., Mooseker M., Sumegi J. Myosin VIIA mutation screening in 189 Usher syndrome type 1 patients. Am J Hum Genet. 1996 Nov;59(5):1074–1083. [PMC free article] [PubMed] [Google Scholar]
  35. Wolenski J. S., Cheney R. E., Forscher P., Mooseker M. S. In vitro motilities of the unconventional myosins, brush border myosin-I, and chick brain myosin-V exhibit assay-dependent differences in velocity. J Exp Zool. 1993 Sep 15;267(1):33–39. doi: 10.1002/jez.1402670106. [DOI] [PubMed] [Google Scholar]
  36. Wu X., Bowers B., Wei Q., Kocher B., Hammer J. A., 3rd Myosin V associates with melanosomes in mouse melanocytes: evidence that myosin V is an organelle motor. J Cell Sci. 1997 Apr;110(Pt 7):847–859. doi: 10.1242/jcs.110.7.847. [DOI] [PubMed] [Google Scholar]
  37. Xie X., Harrison D. H., Schlichting I., Sweet R. M., Kalabokis V. N., Szent-Györgyi A. G., Cohen C. Structure of the regulatory domain of scallop myosin at 2.8 A resolution. Nature. 1994 Mar 24;368(6469):306–312. doi: 10.1038/368306a0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES