Skip to main content
Genetics logoLink to Genetics
. 1998 Apr;148(4):1525–1533. doi: 10.1093/genetics/148.4.1525

The chromosome bias of misincorporations during double-strand break repair is not altered in mismatch repair-defective strains of Saccharomyces cerevisiae.

C B McGill 1, S L Holbeck 1, J N Strathern 1
PMCID: PMC1460100  PMID: 9560371

Abstract

Recombinational repair of a site-specific, double-strand DNA break (DSB) results in increased reversion frequency for nearby mutations. Although some models for DSB repair predict that newly synthesized DNA will be inherited equally by both the originally broken chromosome and the chromosome that served as a template, the DNA synthesis errors are almost exclusively found on the chromosome that had the original DSB (introduced by the HO endonuclease). To determine whether mismatch repair acts on the template chromosome in a directed fashion to restore mismatches to the initial sequence, these experiments were repeated in mismatch repair-defective (pms1, mlh1, and msh2) backgrounds. The results suggest that mismatch repair is not responsible for the observed bias.

Full Text

The Full Text of this article is available as a PDF (142.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alani E., Chi N. W., Kolodner R. The Saccharomyces cerevisiae Msh2 protein specifically binds to duplex oligonucleotides containing mismatched DNA base pairs and insertions. Genes Dev. 1995 Jan 15;9(2):234–247. doi: 10.1101/gad.9.2.234. [DOI] [PubMed] [Google Scholar]
  2. Alani E., Reenan R. A., Kolodner R. D. Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae. Genetics. 1994 May;137(1):19–39. doi: 10.1093/genetics/137.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alani E. The Saccharomyces cerevisiae Msh2 and Msh6 proteins form a complex that specifically binds to duplex oligonucleotides containing mismatched DNA base pairs. Mol Cell Biol. 1996 Oct;16(10):5604–5615. doi: 10.1128/mcb.16.10.5604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borts R. H., Leung W. Y., Kramer W., Kramer B., Williamson M., Fogel S., Haber J. E. Mismatch repair-induced meiotic recombination requires the pms1 gene product. Genetics. 1990 Mar;124(3):573–584. doi: 10.1093/genetics/124.3.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Datta A., Hendrix M., Lipsitch M., Jinks-Robertson S. Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9757–9762. doi: 10.1073/pnas.94.18.9757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Drake J. W. Looking backward on a century of mutation research. Environ Mol Mutagen. 1994;23 (Suppl 24):11–14. doi: 10.1002/em.2850230605. [DOI] [PubMed] [Google Scholar]
  7. Esposito M. S., Bruschi C. V. Diploid yeast cells yield homozygous spontaneous mutations. Curr Genet. 1993 May-Jun;23(5-6):430–434. doi: 10.1007/BF00312630. [DOI] [PubMed] [Google Scholar]
  8. Gilbertson L. A., Stahl F. W. A test of the double-strand break repair model for meiotic recombination in Saccharomyces cerevisiae. Genetics. 1996 Sep;144(1):27–41. doi: 10.1093/genetics/144.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harris R. S., Feng G., Ross K. J., Sidhu R., Thulin C., Longerich S., Szigety S. K., Winkler M. E., Rosenberg S. M. Mismatch repair protein MutL becomes limiting during stationary-phase mutation. Genes Dev. 1997 Sep 15;11(18):2426–2437. doi: 10.1101/gad.11.18.2426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hastings P. J. Recombination in the eukaryotic nucleus. Bioessays. 1988 Aug-Sep;9(2-3):61–64. doi: 10.1002/bies.950090206. [DOI] [PubMed] [Google Scholar]
  11. Holbeck S. L., Strathern J. N. A role for REV3 in mutagenesis during double-strand break repair in Saccharomyces cerevisiae. Genetics. 1997 Nov;147(3):1017–1024. doi: 10.1093/genetics/147.3.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holmes J., Jr, Clark S., Modrich P. Strand-specific mismatch correction in nuclear extracts of human and Drosophila melanogaster cell lines. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5837–5841. doi: 10.1073/pnas.87.15.5837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hunter N., Borts R. H. Mlh1 is unique among mismatch repair proteins in its ability to promote crossing-over during meiosis. Genes Dev. 1997 Jun 15;11(12):1573–1582. doi: 10.1101/gad.11.12.1573. [DOI] [PubMed] [Google Scholar]
  14. Jensen R. E., Herskowitz I. Directionality and regulation of cassette substitution in yeast. Cold Spring Harb Symp Quant Biol. 1984;49:97–104. doi: 10.1101/sqb.1984.049.01.013. [DOI] [PubMed] [Google Scholar]
  15. Kunkel T. A., Loeb L. A. Fidelity of mammalian DNA polymerases. Science. 1981 Aug 14;213(4509):765–767. doi: 10.1126/science.6454965. [DOI] [PubMed] [Google Scholar]
  16. Lahue R. S., Au K. G., Modrich P. DNA mismatch correction in a defined system. Science. 1989 Jul 14;245(4914):160–164. doi: 10.1126/science.2665076. [DOI] [PubMed] [Google Scholar]
  17. Längle-Rouault F., Maenhaut-Michel G., Radman M. GATC sequences, DNA nicks and the MutH function in Escherichia coli mismatch repair. EMBO J. 1987 Apr;6(4):1121–1127. doi: 10.1002/j.1460-2075.1987.tb04867.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Magni G E, Von Borstel R C. Different Rates of Spontaneous Mutation during Mitosis and Meiosis in Yeast. Genetics. 1962 Aug;47(8):1097–1108. doi: 10.1093/genetics/47.8.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McGill C. B., Shafer B. K., Derr L. K., Strathern J. N. Recombination initiated by double-strand breaks. Curr Genet. 1993;23(4):305–314. doi: 10.1007/BF00310891. [DOI] [PubMed] [Google Scholar]
  20. McGill C. B., Shafer B. K., Higgins D. R., Strathern J. N. Analysis of interchromosomal mitotic recombination. Curr Genet. 1990 Jul;18(1):29–39. doi: 10.1007/BF00321112. [DOI] [PubMed] [Google Scholar]
  21. McGill C., Shafer B., Strathern J. Coconversion of flanking sequences with homothallic switching. Cell. 1989 May 5;57(3):459–467. doi: 10.1016/0092-8674(89)90921-5. [DOI] [PubMed] [Google Scholar]
  22. Modrich P., Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem. 1996;65:101–133. doi: 10.1146/annurev.bi.65.070196.000533. [DOI] [PubMed] [Google Scholar]
  23. Modrich P. Mechanisms and biological effects of mismatch repair. Annu Rev Genet. 1991;25:229–253. doi: 10.1146/annurev.ge.25.120191.001305. [DOI] [PubMed] [Google Scholar]
  24. Nasmyth K. A. Molecular genetics of yeast mating type. Annu Rev Genet. 1982;16:439–500. doi: 10.1146/annurev.ge.16.120182.002255. [DOI] [PubMed] [Google Scholar]
  25. Negritto M. T., Wu X., Kuo T., Chu S., Bailis A. M. Influence of DNA sequence identity on efficiency of targeted gene replacement. Mol Cell Biol. 1997 Jan;17(1):278–286. doi: 10.1128/mcb.17.1.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Oztekin-Mat A. Les intoxications d'origine végétale en Turquie. Ann Pharm Fr. 1994;52(5):260–265. [PubMed] [Google Scholar]
  27. Prolla T. A., Christie D. M., Liskay R. M. Dual requirement in yeast DNA mismatch repair for MLH1 and PMS1, two homologs of the bacterial mutL gene. Mol Cell Biol. 1994 Jan;14(1):407–415. doi: 10.1128/mcb.14.1.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Prolla T. A., Pang Q., Alani E., Kolodner R. D., Liskay R. M. MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast. Science. 1994 Aug 19;265(5175):1091–1093. doi: 10.1126/science.8066446. [DOI] [PubMed] [Google Scholar]
  29. Radding C. M. Homologous pairing and strand exchange in genetic recombination. Annu Rev Genet. 1982;16:405–437. doi: 10.1146/annurev.ge.16.120182.002201. [DOI] [PubMed] [Google Scholar]
  30. Reenan R. A., Kolodner R. D. Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions. Genetics. 1992 Dec;132(4):975–985. doi: 10.1093/genetics/132.4.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Resnick M. A. The repair of double-strand breaks in DNA; a model involving recombination. J Theor Biol. 1976 Jun;59(1):97–106. doi: 10.1016/s0022-5193(76)80025-2. [DOI] [PubMed] [Google Scholar]
  32. Roche H., Gietz R. D., Kunz B. A. Specificities of the Saccharomyces cerevisiae rad6, rad18, and rad52 mutators exhibit different degrees of dependence on the REV3 gene product, a putative nonessential DNA polymerase. Genetics. 1995 Jun;140(2):443–456. doi: 10.1093/genetics/140.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schaaper R. M. Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J Biol Chem. 1993 Nov 15;268(32):23762–23765. [PubMed] [Google Scholar]
  34. Schwacha A., Kleckner N. Identification of double Holliday junctions as intermediates in meiotic recombination. Cell. 1995 Dec 1;83(5):783–791. doi: 10.1016/0092-8674(95)90191-4. [DOI] [PubMed] [Google Scholar]
  35. Strathern J. N., Shafer B. K., McGill C. B. DNA synthesis errors associated with double-strand-break repair. Genetics. 1995 Jul;140(3):965–972. doi: 10.1093/genetics/140.3.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]
  37. Thomas D. C., Roberts J. D., Kunkel T. A. Heteroduplex repair in extracts of human HeLa cells. J Biol Chem. 1991 Feb 25;266(6):3744–3751. [PubMed] [Google Scholar]
  38. Tran H. T., Gordenin D. A., Resnick M. A. The prevention of repeat-associated deletions in Saccharomyces cerevisiae by mismatch repair depends on size and origin of deletions. Genetics. 1996 Aug;143(4):1579–1587. doi: 10.1093/genetics/143.4.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES