Skip to main content
Genetics logoLink to Genetics
. 1998 Apr;148(4):1983–1992. doi: 10.1093/genetics/148.4.1983

Physical mapping of the liguleless linkage group in Sorghum bicolor using rice RFLP-selected sorghum BACs.

M S Zwick 1, M N Islam-Faridi 1, D G Czeschin Jr 1, R A Wing 1, G E Hart 1, D M Stelly 1, H J Price 1
PMCID: PMC1460102  PMID: 9560411

Abstract

Physical mapping of BACs by fluorescent in situ hybridization (FISH) was used to analyze the liguleless (lg-1) linkage group in sorghum and compare it to the conserved region in rice and maize. Six liguleless-associated rice restriction fragment length polymorphism (RFLP) markers were used to select 16 homeologous sorghum BACs, which were in turn used to physically map the liguleless linkage group in sorghum. Results show a basic conservation of the liguleless region in sorghum relative to the linkage map of rice. One marker which is distal in rice is more medial in sorghum, and another marker which is found within the linkage group in rice is on a different chromosome in sorghum. BACs associated with linkage group I hybridize to chromosome It, which was identified by using FISH in a sorghum cytogenetic stock trisomic for chromosome I (denoted It), and a BAC associated with linkage group E hybridized to an unidentified chromosome. Selected BACs, representing RFLP loci, were end-cloned for RFLP mapping, and the relative linkage order of these clones was in full agreement with the physical data. Similarities in locus order and the association of RFLP-selected BAC markers with two different chromosomes were found to exist between the linkage map of the liguleless region in maize and the physical map of the liguleless region in sorghum.

Full Text

The Full Text of this article is available as a PDF (307.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn S., Anderson J. A., Sorrells M. E., Tanksley S. D. Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet. 1993 Dec;241(5-6):483–490. doi: 10.1007/BF00279889. [DOI] [PubMed] [Google Scholar]
  2. Ahn S., Tanksley S. D. Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7980–7984. doi: 10.1073/pnas.90.17.7980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennett M. D., Smith J. B. Nuclear dna amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci. 1976 May 27;274(933):227–274. doi: 10.1098/rstb.1976.0044. [DOI] [PubMed] [Google Scholar]
  4. Causse M. A., Fulton T. M., Cho Y. G., Ahn S. N., Chunwongse J., Wu K., Xiao J., Yu Z., Ronald P. C., Harrington S. E. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics. 1994 Dec;138(4):1251–1274. doi: 10.1093/genetics/138.4.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. D'Hont A., Lu Y. H., León D. G., Grivet L., Feldmann P., Lanaud C., Glaszmann J. C. A molecular approach to unraveling the genetics of sugarcane, a complex polyploid of the Andropogoneae tribe. Genome. 1994 Apr;37(2):222–230. doi: 10.1139/g94-031. [DOI] [PubMed] [Google Scholar]
  6. Dunford R. P., Kurata N., Laurie D. A., Money T. A., Minobe Y., Moore G. Conservation of fine-scale DNA marker order in the genomes of rice and the Triticeae. Nucleic Acids Res. 1995 Jul 25;23(14):2724–2728. doi: 10.1093/nar/23.14.2724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hanson R. E., Zwick M. S., Choi S., Islam-Faridi M. N., McKnight T. D., Wing R. A., Price H. J., Stelly D. M. Fluorescent in situ hybridization of a bacterial artificial chromosome. Genome. 1995 Aug;38(4):646–651. doi: 10.1139/g95-082. [DOI] [PubMed] [Google Scholar]
  8. Helentjaris T., Weber D., Wright S. Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics. 1988 Feb;118(2):353–363. doi: 10.1093/genetics/118.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hoang-Tang, Dube S. K., Liang G. H., Kung S. D. Possible repetitive DNA markers for Eusorghum and Parasorghum and their potential use in examining phylogenetic hypotheses on the origin of Sorghum species. Genome. 1991 Apr;34(2):241–250. doi: 10.1139/g91-038. [DOI] [PubMed] [Google Scholar]
  10. Hsiao C., Chatterton N. J., Asay K. H., Jensen K. B. Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots. Genome. 1994 Feb;37(1):112–120. doi: 10.1139/g94-014. [DOI] [PubMed] [Google Scholar]
  11. Hulbert S. H., Richter T. E., Axtell J. D., Bennetzen J. L. Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4251–4255. doi: 10.1073/pnas.87.11.4251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lane D. S. Patient education in the community hospital. J Biocommun. 1978 Mar;5(1):6–10. [PubMed] [Google Scholar]
  13. Moore G., Devos K. M., Wang Z., Gale M. D. Cereal genome evolution. Grasses, line up and form a circle. Curr Biol. 1995 Jul 1;5(7):737–739. doi: 10.1016/s0960-9822(95)00148-5. [DOI] [PubMed] [Google Scholar]
  14. Moore G., Foote T., Helentjaris T., Devos K., Kurata N., Gale M. Was there a single ancestral cereal chromosome? Trends Genet. 1995 Mar;11(3):81–82. doi: 10.1016/S0168-9525(00)89005-8. [DOI] [PubMed] [Google Scholar]
  15. Whitkus R., Doebley J., Lee M. Comparative genome mapping of Sorghum and maize. Genetics. 1992 Dec;132(4):1119–1130. doi: 10.1093/genetics/132.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Zwick M. S., Hanson R. E., Islam-Faridi M. N., Stelly D. M., Wing R. A., Price H. J., McKnight T. D. A rapid procedure for the isolation of C0t-1 DNA from plants. Genome. 1997 Feb;40(1):138–142. doi: 10.1139/g97-020. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES