Skip to main content
Genetics logoLink to Genetics
. 1998 May;149(1):117–130. doi: 10.1093/genetics/149.1.117

The isolation and characterization of nrc-1 and nrc-2, two genes encoding protein kinases that control growth and development in Neurospora crassa.

G O Kothe 1, S J Free 1
PMCID: PMC1460147  PMID: 9584090

Abstract

Using an insertional mutagenesis approach, a series of Neurospora crassa mutants affected in the ability to control entry into the conidiation developmental program were isolated. One such mutant, GTH16-T4, was found to lack normal vegetative hyphae and to undergo constitutive conidiation. The affected gene has been named nrc-1, for nonrepressible conidiation gene #1. The nrc-1 gene was cloned from the mutant genomic DNA by plasmid rescue, and was found to encode a protein closely related to the protein products of the Saccharomyces cerevisiae STE11 and Schizosaccharomyces pombe byr2 genes. Both of these genes encode MAPKK kinases that are necessary for sexual development in these organisms. We conclude the nrc-1 gene encodes a MAPKK kinase that functions to repress the onset of conidiation in N. crassa. A second mutant, GTH16-T17, was found to lack normal vegetative hyphae and to constitutively enter, but not complete, the conidiation program. The affected locus is referred to as nrc-2 (nonrepressible conidiation gene #2). The nrc-2 gene was cloned and found to encode a serine-threonine protein kinase. The kinase is closely related to the predicted protein products of the S. pombe kad5, and the S. cerevisiae YNRO47w and KIN82 genes, three genes that have been identified in genome sequencing projects. The N. crassa nrc-2 gene is the first member of this group of kinases for which a phenotype has been defined. We conclude a functional nrc-2-encoded serine/threonine kinase is required to repress entry into the conidiation program.

Full Text

The Full Text of this article is available as a PDF (537.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akins R. A., Lambowitz A. M. General method for cloning Neurospora crassa nuclear genes by complementation of mutants. Mol Cell Biol. 1985 Sep;5(9):2272–2278. doi: 10.1128/mcb.5.9.2272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arganoza M. T., Ohrnberger J., Min J., Akins R. A. Suppressor mutants of Neurospora crassa that tolerate allelic differences at single or at multiple heterokaryon incompatibility loci. Genetics. 1994 Jul;137(3):731–742. doi: 10.1093/genetics/137.3.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arpaia G., Loros J. J., Dunlap J. C., Morelli G., Macino G. Light induction of the clock-controlled gene ccg-1 is not transduced through the circadian clock in Neurospora crassa. Mol Gen Genet. 1995 Apr 20;247(2):157–163. doi: 10.1007/BF00705645. [DOI] [PubMed] [Google Scholar]
  4. Bell-Pedersen D., Dunlap J. C., Loros J. J. Distinct cis-acting elements mediate clock, light, and developmental regulation of the Neurospora crassa eas (ccg-2) gene. Mol Cell Biol. 1996 Feb;16(2):513–521. doi: 10.1128/mcb.16.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berlin V., Yanofsky C. Protein changes during the asexual cycle of Neurospora crassa. Mol Cell Biol. 1985 Apr;5(4):839–848. doi: 10.1128/mcb.5.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bruno K. S., Aramayo R., Minke P. F., Metzenberg R. L., Plamann M. Loss of growth polarity and mislocalization of septa in a Neurospora mutant altered in the regulatory subunit of cAMP-dependent protein kinase. EMBO J. 1996 Nov 1;15(21):5772–5782. [PMC free article] [PubMed] [Google Scholar]
  7. Carattoli A., Kato E., Rodriguez-Franco M., Stuart W. D., Macino G. A chimeric light-regulated amino acid transport system allows the isolation of blue light regulator (blr) mutants of Neurospora crassa. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6612–6616. doi: 10.1073/pnas.92.14.6612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cobb M. H., Goldsmith E. J. How MAP kinases are regulated. J Biol Chem. 1995 Jun 23;270(25):14843–14846. doi: 10.1074/jbc.270.25.14843. [DOI] [PubMed] [Google Scholar]
  9. Elion E. A., Grisafi P. L., Fink G. R. FUS3 encodes a cdc2+/CDC28-related kinase required for the transition from mitosis into conjugation. Cell. 1990 Feb 23;60(4):649–664. doi: 10.1016/0092-8674(90)90668-5. [DOI] [PubMed] [Google Scholar]
  10. Fincham J. R. Transformation in fungi. Microbiol Rev. 1989 Mar;53(1):148–170. doi: 10.1128/mr.53.1.148-170.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Giles N. H., Case M. E., Baum J., Geever R., Huiet L., Patel V., Tyler B. Gene organization and regulation in the qa (quinic acid) gene cluster of Neurospora crassa. Microbiol Rev. 1985 Sep;49(3):338–358. doi: 10.1128/mr.49.3.338-358.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gimeno C. J., Ljungdahl P. O., Styles C. A., Fink G. R. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell. 1992 Mar 20;68(6):1077–1090. doi: 10.1016/0092-8674(92)90079-r. [DOI] [PubMed] [Google Scholar]
  13. Hanks S. K., Quinn A. M., Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988 Jul 1;241(4861):42–52. doi: 10.1126/science.3291115. [DOI] [PubMed] [Google Scholar]
  14. Kang S., Metzenberg R. L. Insertional mutagenesis in Neurospora crassa: cloning and molecular analysis of the preg+ gene controlling the activity of the transcriptional activator NUC-1. Genetics. 1993 Feb;133(2):193–202. doi: 10.1093/genetics/133.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kore-eda S., Murayama T., Uno I. Isolation and characterization of the adenylate cyclase structural gene of Neurospora crassa. Jpn J Genet. 1991 Jun;66(3):317–334. doi: 10.1266/jjg.66.317. [DOI] [PubMed] [Google Scholar]
  16. Kurjan J. The pheromone response pathway in Saccharomyces cerevisiae. Annu Rev Genet. 1993;27:147–179. doi: 10.1146/annurev.ge.27.120193.001051. [DOI] [PubMed] [Google Scholar]
  17. Lauter F. R., Russo V. E. Blue light induction of conidiation-specific genes in Neurospora crassa. Nucleic Acids Res. 1991 Dec 25;19(24):6883–6886. doi: 10.1093/nar/19.24.6883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Loros J. J., Denome S. A., Dunlap J. C. Molecular cloning of genes under control of the circadian clock in Neurospora. Science. 1989 Jan 20;243(4889):385–388. doi: 10.1126/science.2563175. [DOI] [PubMed] [Google Scholar]
  19. Madi L., McBride S. A., Bailey L. A., Ebbole D. J. rco-3, a gene involved in glucose transport and conidiation in Neurospora crassa. Genetics. 1997 Jun;146(2):499–508. doi: 10.1093/genetics/146.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McNally M. T., Free S. J. Isolation and characterization of a Neurospora glucose-repressible gene. Curr Genet. 1988 Dec;14(6):545–551. doi: 10.1007/BF00434079. [DOI] [PubMed] [Google Scholar]
  21. Nakayama N., Kaziro Y., Arai K., Matsumoto K. Role of STE genes in the mating factor signaling pathway mediated by GPA1 in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Sep;8(9):3777–3783. doi: 10.1128/mcb.8.9.3777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Orbach M. J., Schneider W. P., Yanofsky C. Cloning of methylated transforming DNA from Neurospora crassa in Escherichia coli. Mol Cell Biol. 1988 May;8(5):2211–2213. doi: 10.1128/mcb.8.5.2211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rhodes N., Connell L., Errede B. STE11 is a protein kinase required for cell-type-specific transcription and signal transduction in yeast. Genes Dev. 1990 Nov;4(11):1862–1874. doi: 10.1101/gad.4.11.1862. [DOI] [PubMed] [Google Scholar]
  24. Scott W. A., Solomon B. Adenosine 3',5'-cyclic monophosphate and morphology in Neurospora crassa: drug-induced alterations. J Bacteriol. 1975 May;122(2):454–463. doi: 10.1128/jb.122.2.454-463.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Seger R., Krebs E. G. The MAPK signaling cascade. FASEB J. 1995 Jun;9(9):726–735. [PubMed] [Google Scholar]
  26. Selker E. U. Premeiotic instability of repeated sequences in Neurospora crassa. Annu Rev Genet. 1990;24:579–613. doi: 10.1146/annurev.ge.24.120190.003051. [DOI] [PubMed] [Google Scholar]
  27. Springer M. L., Yanofsky C. A morphological and genetic analysis of conidiophore development in Neurospora crassa. Genes Dev. 1989 Apr;3(4):559–571. doi: 10.1101/gad.3.4.559. [DOI] [PubMed] [Google Scholar]
  28. Wang Y., Xu H. P., Riggs M., Rodgers L., Wigler M. byr2, a Schizosaccharomyces pombe gene encoding a protein kinase capable of partial suppression of the ras1 mutant phenotype. Mol Cell Biol. 1991 Jul;11(7):3554–3563. doi: 10.1128/mcb.11.7.3554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wang Z., Deak M., Free S. J. A cis-acting region required for the regulated expression of grg-1, a Neurospora glucose-repressible gene. Two regulatory sites (CRE and NRS) are required to repress grg-1 expression. J Mol Biol. 1994 Mar 18;237(1):65–74. doi: 10.1006/jmbi.1994.1209. [DOI] [PubMed] [Google Scholar]
  30. Yamashiro C. T., Ebbole D. J., Lee B. U., Brown R. E., Bourland C., Madi L., Yanofsky C. Characterization of rco-1 of Neurospora crassa, a pleiotropic gene affecting growth and development that encodes a homolog of Tup1 of Saccharomyces cerevisiae. Mol Cell Biol. 1996 Nov;16(11):6218–6228. doi: 10.1128/mcb.16.11.6218. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES