Skip to main content
Genetics logoLink to Genetics
. 1998 May;149(1):405–415. doi: 10.1093/genetics/149.1.405

Circadian expression of the maize catalase Cat3 gene is highly conserved among diverse maize genotypes with structurally different promoters.

A N Polidoros 1, J G Scandalios 1
PMCID: PMC1460148  PMID: 9584112

Abstract

The Cat3 gene of maize exhibits a transcriptionally regulated circadian rhythm. In the present study we examined the following: (1) the extent of the circadian Cat3 expression between maize genotypes of diverse origin; (2) the functional significance of a Tourist transposable element located in the Cat3 promoter of the inbred line W64A, which harbors putative regulatory elements (GATA repeat, CCAAT boxes) shown to be involved in the light induction and circadian regulation of the Arabidopsis CAB2, as well as other plant genes; and (3) aspects of the physiological role of CAT-3 in maize metabolism. Results confirm that the circadian Cat3 expression is a general phenomenon in maize. Regulation of Cat3 gene expression is not dependent on the presence of the Tourist element in the promoter of the gene nor on the presence of motifs similar to those found significant in the circadian expression of the Arabidopsis CAB2 gene. Structural diversity was revealed in the Cat3 promoters of maize genotypes of diverse origins. However, highly conserved regions with putative regulatory motifs were identified. Relevance of the conserved regions to the circadian regulation of the gene is discussed. Possible physiological roles of CAT-3 are suggested.

Full Text

The Full Text of this article is available as a PDF (570.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abler M. L., Scandalios J. G. Isolation and characterization of a genomic sequence encoding the maize Cat3 catalase gene. Plant Mol Biol. 1993 Sep;22(6):1031–1038. doi: 10.1007/BF00028975. [DOI] [PubMed] [Google Scholar]
  2. Acevedo A., Williamson J. D., Scandalios J. G. Photoregulation of the Cat2 and Cat3 catalase genes in pigmented and pigment-deficient maize: the circadian regulation of Cat3 is superimposed on its quasi-constitutive expression in maize leaves. Genetics. 1991 Mar;127(3):601–607. doi: 10.1093/genetics/127.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson S. L., Teakle G. R., Martino-Catt S. J., Kay S. A. Circadian clock- and phytochrome-regulated transcription is conferred by a 78 bp cis-acting domain of the Arabidopsis CAB2 promoter. Plant J. 1994 Oct;6(4):457–470. doi: 10.1046/j.1365-313x.1994.6040457.x. [DOI] [PubMed] [Google Scholar]
  4. Bouchez D., Tokuhisa J. G., Llewellyn D. J., Dennis E. S., Ellis J. G. The ocs-element is a component of the promoters of several T-DNA and plant viral genes. EMBO J. 1989 Dec 20;8(13):4197–4204. doi: 10.1002/j.1460-2075.1989.tb08605.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bureau T. E., Wessler S. R. Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1411–1415. doi: 10.1073/pnas.91.4.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bureau T. E., Wessler S. R. Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell. 1994 Jun;6(6):907–916. doi: 10.1105/tpc.6.6.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bäumlein H., Nagy I., Villarroel R., Inzé D., Wobus U. Cis-analysis of a seed protein gene promoter: the conservative RY repeat CATGCATG within the legumin box is essential for tissue-specific expression of a legumin gene. Plant J. 1992 Mar;2(2):233–239. [PubMed] [Google Scholar]
  8. Chamberland S., Daigle N., Bernier F. The legumin boxes and the 3' part of a soybean beta-conglycinin promoter are involved in seed gene expression in transgenic tobacco plants. Plant Mol Biol. 1992 Sep;19(6):937–949. doi: 10.1007/BF00040526. [DOI] [PubMed] [Google Scholar]
  9. Feinbaum R. L., Storz G., Ausubel F. M. High intensity and blue light regulated expression of chimeric chalcone synthase genes in transgenic Arabidopsis thaliana plants. Mol Gen Genet. 1991 May;226(3):449–456. doi: 10.1007/BF00260658. [DOI] [PubMed] [Google Scholar]
  10. Fiedler U., Filistein R., Wobus U., Bäumlein H. A complex ensemble of cis-regulatory elements controls the expression of a Vicia faba non-storage seed protein gene. Plant Mol Biol. 1993 Jul;22(4):669–679. doi: 10.1007/BF00047407. [DOI] [PubMed] [Google Scholar]
  11. Frugoli J. A., Zhong H. H., Nuccio M. L., McCourt P., McPeek M. A., Thomas T. L., McClung C. R. Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiol. 1996 Sep;112(1):327–336. doi: 10.1104/pp.112.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldsbrough A. P., Albrecht H., Stratford R. Salicylic acid-inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. Plant J. 1993 Apr;3(4):563–571. doi: 10.1046/j.1365-313x.1993.03040563.x. [DOI] [PubMed] [Google Scholar]
  13. Guan L., Scandalios J. G. Developmentally related responses of maize catalase genes to salicylic acid. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5930–5934. doi: 10.1073/pnas.92.13.5930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Guan L., Scandalios J. G. Molecular evolution of maize catalases and their relationship to other eukaryotic and prokaryotic catalases. J Mol Evol. 1996 May;42(5):570–579. doi: 10.1007/BF02352287. [DOI] [PubMed] [Google Scholar]
  15. Güssow D., Clackson T. Direct clone characterization from plaques and colonies by the polymerase chain reaction. Nucleic Acids Res. 1989 May 25;17(10):4000–4000. doi: 10.1093/nar/17.10.4000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hattori T., Vasil V., Rosenkrans L., Hannah L. C., McCarty D. R., Vasil I. K. The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Dev. 1992 Apr;6(4):609–618. doi: 10.1101/gad.6.4.609. [DOI] [PubMed] [Google Scholar]
  17. Higo K., Higo H. Cloning and characterization of the rice CatA catalase gene, a homologue of the maize Cat3 gene. Plant Mol Biol. 1996 Feb;30(3):505–521. doi: 10.1007/BF00049328. [DOI] [PubMed] [Google Scholar]
  18. Inoue H., Watanabe N., Higashi Y., Fujii-Kuriyama Y. Structures of regulatory regions in the human cytochrome P-450scc (desmolase) gene. Eur J Biochem. 1991 Jan 30;195(2):563–569. doi: 10.1111/j.1432-1033.1991.tb15738.x. [DOI] [PubMed] [Google Scholar]
  19. Klimyuk V. I., Jones J. D. AtDMC1, the Arabidopsis homologue of the yeast DMC1 gene: characterization, transposon-induced allelic variation and meiosis-associated expression. Plant J. 1997 Jan;11(1):1–14. doi: 10.1046/j.1365-313x.1997.11010001.x. [DOI] [PubMed] [Google Scholar]
  20. Kubasek W. L., Shirley B. W., McKillop A., Goodman H. M., Briggs W., Ausubel F. M. Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings. Plant Cell. 1992 Oct;4(10):1229–1236. doi: 10.1105/tpc.4.10.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Köster-Töpfer M., Frommer W. B., Rocha-Sosa M., Willmitzer L. Presence of a transposon-like element in the promoter region of an inactive patatin gene in Solanum tuberosum L. Plant Mol Biol. 1990 Feb;14(2):239–247. doi: 10.1007/BF00018564. [DOI] [PubMed] [Google Scholar]
  22. Lelievre J. M., Oliveira L. O., Nielsen N. C. 5'CATGCAT-3' Elements Modulate the Expression of Glycinin Genes. Plant Physiol. 1992 Jan;98(1):387–391. doi: 10.1104/pp.98.1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Luan S., Bogorad L. A rice cab gene promoter contains separate cis-acting elements that regulate expression in dicot and monocot plants. Plant Cell. 1992 Aug;4(8):971–981. doi: 10.1105/tpc.4.8.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McLaughlin M., Walbot V. Cloning of a mutable bz2 allele of maize by transposon tagging and differential hybridization. Genetics. 1987 Dec;117(4):771–776. doi: 10.1093/genetics/117.4.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Miao Z. H., Lam E. Construction of a trans-dominant inhibitor for members of the TGA family of transcription factors conserved in higher plants. Plant J. 1995 Jun;7(6):887–896. doi: 10.1046/j.1365-313x.1995.07060887.x. [DOI] [PubMed] [Google Scholar]
  26. Millar A. J., Kay S. A. Circadian Control of cab Gene Transcription and mRNA Accumulation in Arabidopsis. Plant Cell. 1991 May;3(5):541–550. doi: 10.1105/tpc.3.5.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ohl S., Hedrick S. A., Chory J., Lamb C. J. Functional properties of a phenylalanine ammonia-lyase promoter from Arabidopsis. Plant Cell. 1990 Sep;2(9):837–848. doi: 10.1105/tpc.2.9.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pabo C. O., Sauer R. T. Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem. 1992;61:1053–1095. doi: 10.1146/annurev.bi.61.070192.005201. [DOI] [PubMed] [Google Scholar]
  29. Redinbaugh M. G., Sabre M., Scandalios J. G. Expression of the maize Cat3 catalase gene is under the influence of a circadian rhythm. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6853–6857. doi: 10.1073/pnas.87.17.6853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Redinbaugh M. G., Wadsworth G. J., Scandalios J. G. Characterization of catalase transcripts and their differential expression in maize. Biochim Biophys Acta. 1988 Nov 10;951(1):104–116. doi: 10.1016/0167-4781(88)90030-9. [DOI] [PubMed] [Google Scholar]
  31. Riggs C. D., Voelker T. A., Chrispeels M. J. Cotyledon nuclear proteins bind to DNA fragments harboring regulatory elements of phytohemagglutinin genes. Plant Cell. 1989 Jun;1(6):609–621. doi: 10.1105/tpc.1.6.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rouster J., Leah R., Mundy J., Cameron-Mills V. Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J. 1997 Mar;11(3):513–523. doi: 10.1046/j.1365-313x.1997.11030513.x. [DOI] [PubMed] [Google Scholar]
  33. Schiefelbein J. W., Furtek D. B., Dooner H. K., Nelson O. E., Jr Two mutations in a maize bronze-1 allele caused by transposable elements of the Ac-Ds family alter the quantity and quality of the gene product. Genetics. 1988 Nov;120(3):767–777. doi: 10.1093/genetics/120.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Skadsen R. W., Scandalios J. G. Translational control of photo-induced expression of the Cat2 catalase gene during leaf development in maize. Proc Natl Acad Sci U S A. 1987 May;84(9):2785–2789. doi: 10.1073/pnas.84.9.2785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stavenhagen J. B., Robins D. M. An ancient provirus has imposed androgen regulation on the adjacent mouse sex-limited protein gene. Cell. 1988 Oct 21;55(2):247–254. doi: 10.1016/0092-8674(88)90047-5. [DOI] [PubMed] [Google Scholar]
  36. Ting C. N., Rosenberg M. P., Snow C. M., Samuelson L. C., Meisler M. H. Endogenous retroviral sequences are required for tissue-specific expression of a human salivary amylase gene. Genes Dev. 1992 Aug;6(8):1457–1465. doi: 10.1101/gad.6.8.1457. [DOI] [PubMed] [Google Scholar]
  37. Weil C. F., Marillonnet S., Burr B., Wessler S. R. Changes in state of the Wx-m5 allele of maize are due to intragenic transposition of Ds. Genetics. 1992 Jan;130(1):175–185. doi: 10.1093/genetics/130.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. White S. E., Habera L. F., Wessler S. R. Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11792–11796. doi: 10.1073/pnas.91.25.11792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Willekens H., Langebartels C., Tiré C., Van Montagu M., Inzé D., Van Camp W. Differential expression of catalase genes in Nicotiana plumbaginifolia (L.). Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10450–10454. doi: 10.1073/pnas.91.22.10450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Williamson J. D., Scandalios J. G. Differential response of maize catalases and superoxide dismutases to the photoactivated fungal toxin cercosporin. Plant J. 1992 May;2(3):351–358. doi: 10.1111/j.1365-313x.1992.00351.x. [DOI] [PubMed] [Google Scholar]
  41. Zenke M., Grundström T., Matthes H., Wintzerith M., Schatz C., Wildeman A., Chambon P. Multiple sequence motifs are involved in SV40 enhancer function. EMBO J. 1986 Feb;5(2):387–397. doi: 10.1002/j.1460-2075.1986.tb04224.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhong H. H., McClung C. R. The circadian clock gates expression of two Arabidopsis catalase genes to distinct and opposite circadian phases. Mol Gen Genet. 1996 May 23;251(2):196–203. doi: 10.1007/BF02172918. [DOI] [PubMed] [Google Scholar]
  43. Zhong H. H., Young J. C., Pease E. A., Hangarter R. P., McClung C. R. Interactions between Light and the Circadian Clock in the Regulation of CAT2 Expression in Arabidopsis. Plant Physiol. 1994 Mar;104(3):889–898. doi: 10.1104/pp.104.3.889. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES