Skip to main content
Genetics logoLink to Genetics
. 1998 May;149(1):417–427. doi: 10.1093/genetics/149.1.417

Isolation and characterization of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin.

J P Vogel 1, P Schuerman 1, K Woeste 1, I Brandstatter 1, J J Kieber 1
PMCID: PMC1460151  PMID: 9584113

Abstract

Cytokinins elevate ethylene biosynthesis in etiolated Arabidopsis seedlings via a post-transcriptional modification of one isoform of the key biosynthetic enzyme ACC synthase. In order to begin to dissect the signaling events leading from cytokinin perception to this modification, we have isolated a series of mutants that lack the ethylene-mediated triple response in the presence of cytokinin due to their failure to increase ethylene biosynthesis. Analysis of genetic complementation and mapping revealed that these Cin mutants (cytokinin-insensitive) represent four distinct complementation groups, one of which, cin4, is allelic to the constitutive photomorphogenic mutant fus9/cop10. The Cin mutants have subtle effects on the morphology of adult plants. We further characterized the Cin mutants by analyzing ethylene biosynthesis in response to various other inducers and in adult tissues, as well as by assaying additional cytokinin responses. The cin3 mutant did not disrupt ethylene biosynthesis under any other conditions, nor did it disrupt any other cytokinin responses. Only cin2 disrupted ethylene biosynthesis in multiple circumstances. cin1 and cin2 made less anthocyanin in response to cytokinin. cin1 also displayed reduced shoot initiation in tissue culture in response to cytokinin, suggesting that it affects a cytokinin signaling element.

Full Text

The Full Text of this article is available as a PDF (258.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel S., Nguyen M. D., Chow W., Theologis A. ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana. Structural characterization, expression in Escherichia coli, and expression characteristics in response to auxin [corrected]. J Biol Chem. 1995 Aug 11;270(32):19093–19099. doi: 10.1074/jbc.270.32.19093. [DOI] [PubMed] [Google Scholar]
  2. Baskin T. I., Cork A., Williamson R. E., Gorst J. R. STUNTED PLANT 1, A Gene Required for Expansion in Rapidly Elongating but Not in Dividing Cells and Mediating Root Growth Responses to Applied Cytokinin. Plant Physiol. 1995 Jan;107(1):233–243. doi: 10.1104/pp.107.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
  4. Bleecker A. B., Estelle M. A., Somerville C., Kende H. Insensitivity to Ethylene Conferred by a Dominant Mutation in Arabidopsis thaliana. Science. 1988 Aug 26;241(4869):1086–1089. doi: 10.1126/science.241.4869.1086. [DOI] [PubMed] [Google Scholar]
  5. Brzobohatý B., Moore I., Palme K. Cytokinin metabolism: implications for regulation of plant growth and development. Plant Mol Biol. 1994 Dec;26(5):1483–1497. doi: 10.1007/BF00016486. [DOI] [PubMed] [Google Scholar]
  6. Cary A. J., Liu W., Howell S. H. Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol. 1995 Apr;107(4):1075–1082. doi: 10.1104/pp.107.4.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chang C., Kwok S. F., Bleecker A. B., Meyerowitz E. M. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 1993 Oct 22;262(5133):539–544. doi: 10.1126/science.8211181. [DOI] [PubMed] [Google Scholar]
  8. Deikman J., Hammer P. E. Induction of Anthocyanin Accumulation by Cytokinins in Arabidopsis thaliana. Plant Physiol. 1995 May;108(1):47–57. doi: 10.1104/pp.108.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Deikman J., Ulrich M. A novel cytokinin-resistant mutant of Arabidopsis with abbreviated shoot development. Planta. 1995;195(3):440–449. doi: 10.1007/BF00202603. [DOI] [PubMed] [Google Scholar]
  10. Edwards K., Johnstone C., Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991 Mar 25;19(6):1349–1349. doi: 10.1093/nar/19.6.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Faure J. D., Jullien M., Caboche M. Zea3: a pleiotropic mutation affecting cotyledon development, cytokinin resistance and carbon-nitrogen metabolism. Plant J. 1994 Apr;5(4):481–491. doi: 10.1046/j.1365-313x.1994.5040481.x. [DOI] [PubMed] [Google Scholar]
  12. Featherstone D. R., Cove D. J., Ashton N. W. Genetic analysis by somatic hybridization of cytokinin overproducing developmental mutants of the moss, Physcomitrella patens. Mol Gen Genet. 1990 Jul;222(2-3):217–224. doi: 10.1007/BF00633821. [DOI] [PubMed] [Google Scholar]
  13. Gan S., Amasino R. M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science. 1995 Dec 22;270(5244):1986–1988. doi: 10.1126/science.270.5244.1986. [DOI] [PubMed] [Google Scholar]
  14. Guzmán P., Ecker J. R. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell. 1990 Jun;2(6):513–523. doi: 10.1105/tpc.2.6.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kakimoto T. CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science. 1996 Nov 8;274(5289):982–985. doi: 10.1126/science.274.5289.982. [DOI] [PubMed] [Google Scholar]
  16. Kieber J. J., Rothenberg M., Roman G., Feldmann K. A., Ecker J. R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993 Feb 12;72(3):427–441. doi: 10.1016/0092-8674(93)90119-b. [DOI] [PubMed] [Google Scholar]
  17. Kieber J. J. The ethylene response pathway in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol. 1997;48:277–296. doi: 10.1146/annurev.arplant.48.1.277. [DOI] [PubMed] [Google Scholar]
  18. Li J., Nagpal P., Vitart V., McMorris T. C., Chory J. A role for brassinosteroids in light-dependent development of Arabidopsis. Science. 1996 Apr 19;272(5260):398–401. doi: 10.1126/science.272.5260.398. [DOI] [PubMed] [Google Scholar]
  19. Liang X., Abel S., Keller J. A., Shen N. F., Theologis A. The 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):11046–11050. doi: 10.1073/pnas.89.22.11046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liang X., Oono Y., Shen N. F., Köhler C., Li K., Scolnik P. A., Theologis A. Characterization of two members (ACS1 and ACS3) of the 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana. Gene. 1995 Dec 29;167(1-2):17–24. doi: 10.1016/0378-1119(95)00694-x. [DOI] [PubMed] [Google Scholar]
  21. Martin T., Sotta B., Jullien M., Caboche M., Faure J. D. ZEA3: A Negative Modulator of Cytokinin Responses in Plant Seedlings. Plant Physiol. 1997 Aug;114(4):1177–1185. doi: 10.1104/pp.114.4.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Roman G., Lubarsky B., Kieber J. J., Rothenberg M., Ecker J. R. Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics. 1995 Mar;139(3):1393–1409. doi: 10.1093/genetics/139.3.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. SKOOG F., MILLER C. O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol. 1957;11:118–130. [PubMed] [Google Scholar]
  24. Van der Straeten D., Rodrigues-Pousada R. A., Villarroel R., Hanley S., Goodman H. M., Van Montagu M. Cloning, genetic mapping, and expression analysis of an Arabidopsis thaliana gene that encodes 1-aminocyclopropane-1-carboxylate synthase. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9969–9973. doi: 10.1073/pnas.89.20.9969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wang T. L., Horgan R., Cove D. Cytokinins from the Moss Physcomitrella patens. Plant Physiol. 1981 Sep;68(3):735–738. doi: 10.1104/pp.68.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wei N., Kwok S. F., von Arnim A. G., Lee A., McNellis T. W., Piekos B., Deng X. W. Arabidopsis COP8, COP10, and COP11 genes are involved in repression of photomorphogenic development in darkness. Plant Cell. 1994 May;6(5):629–643. doi: 10.1105/tpc.6.5.629. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES