Skip to main content
Genetics logoLink to Genetics
. 1998 Jun;149(2):947–957. doi: 10.1093/genetics/149.2.947

The cloning by complementation of the pawn-A gene in Paramecium.

W J Haynes 1, B Vaillant 1, R R Preston 1, Y Saimi 1, C Kung 1
PMCID: PMC1460177  PMID: 9611205

Abstract

The genetic dissection of a simple avoidance reaction behavior in Paramecium tetraurelia has shown that ion channels are a critical molecular element in signal transduction. Pawn mutants, for example, were originally selected for their inability to swim backward, a trait that has since been shown to result from the loss of a voltage-dependent calcium current. The several genes defined by this phenotype were anticipated to be difficult to clone since the 800-ploid somatic macronucleus of P. tetraurelia is a formidable obstacle to cloning by complementation. Nonetheless, when the macronucleus of a pawn mutant (pwA/pwA) was injected with total wild-type DNA or a fractional library of DNA, its clonal descendants all responded to stimuli like the wild type. By sorting a fractional library, we cloned and sequenced a 2.3-kb fragment that restores the Ca2+ current and excitability missing in pawn-A. Data from RNase protection assays, followed by the sequencing of mutant alleles and cDNA clones, established an open reading frame. The conceptually translated product suggests a novel protein that may be glycophosphatidylinositol anchored. We also discuss the general usefulness of this method in cloning other unknown DNA sequences from Paramecium that are functionally responsible for various mutant phenotypes.

Full Text

The Full Text of this article is available as a PDF (220.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bazan J. F., Koch-Nolte F. Sequence and structural links between distant ADP-ribosyltransferase families. Adv Exp Med Biol. 1997;419:99–107. doi: 10.1007/978-1-4419-8632-0_12. [DOI] [PubMed] [Google Scholar]
  2. Brendel V., Bucher P., Nourbakhsh I. R., Blaisdell B. E., Karlin S. Methods and algorithms for statistical analysis of protein sequences. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2002–2006. doi: 10.1073/pnas.89.6.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brewer G., Ross J. Messenger RNA turnover in cell-free extracts. Methods Enzymol. 1990;181:202–209. doi: 10.1016/0076-6879(90)81122-b. [DOI] [PubMed] [Google Scholar]
  4. Catterall W. A. Molecular properties of sodium and calcium channels. J Bioenerg Biomembr. 1996 Jun;28(3):219–230. doi: 10.1007/BF02110697. [DOI] [PubMed] [Google Scholar]
  5. Chang S. Y., Kung C. Genetic Analyses of Heat-Sensitve Pawn Mutants of PARAMECIUM AURELIA. Genetics. 1973 Sep;75(1):49–59. doi: 10.1093/genetics/75.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang S. Y., Kung C. Temperature-sensitive pawns: conditional behavioral mutants of Paramecium aurelia. Science. 1973 Jun 15;180(4091):1197–1199. doi: 10.1126/science.180.4091.1197. [DOI] [PubMed] [Google Scholar]
  7. Chang S. Y., Van Houten J., Robles L. J., Lui S. S., Kung C. An extensive behavioural and genetic analysis of the pawn mutants in Paramecium aurelia. Genet Res. 1974 Apr;23(2):165–173. doi: 10.1017/s0016672300014786. [DOI] [PubMed] [Google Scholar]
  8. Dynes J. L., Firtel R. A. Molecular complementation of a genetic marker in Dictyostelium using a genomic DNA library. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7966–7970. doi: 10.1073/pnas.86.20.7966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eisenbach L., Ramanathan R., Nelson D. L. Biochemical studies of the excitable membrane of paramecium tetraurelia. IX. Antibodies against ciliary membrane proteins. J Cell Biol. 1983 Nov;97(5 Pt 1):1412–1420. doi: 10.1083/jcb.97.5.1412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
  11. Gilley D., Preer J. R., Jr, Aufderheide K. J., Polisky B. Autonomous replication and addition of telomerelike sequences to DNA microinjected into Paramecium tetraurelia macronuclei. Mol Cell Biol. 1988 Nov;8(11):4765–4772. doi: 10.1128/mcb.8.11.4765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Godiska R., Aufderheide K. J., Gilley D., Hendrie P., Fitzwater T., Preer L. B., Polisky B., Preer J. R., Jr Transformation of Paramecium by microinjection of a cloned serotype gene. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7590–7594. doi: 10.1073/pnas.84.21.7590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gurnett C. A., Campbell K. P. Transmembrane auxiliary subunits of voltage-dependent ion channels. J Biol Chem. 1996 Nov 8;271(45):27975–27978. doi: 10.1074/jbc.271.45.27975. [DOI] [PubMed] [Google Scholar]
  14. Haga N., Forte M., Saimi Y., Kung C. Characterization of cytoplasmic factors which complement Ca2+ channel mutations in Paramecium tetraurelia. J Neurogenet. 1984 Sep;1(3):259–274. doi: 10.3109/01677068409107091. [DOI] [PubMed] [Google Scholar]
  15. Haga N., Forte M., Saimi Y., Kung C. Microinjection of cytoplasm as a test of complementation in Paramecium. J Cell Biol. 1982 Feb;92(2):559–564. doi: 10.1083/jcb.92.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Haga N., Saimi Y., Takahashi M., Kung C. Intra- and interspecific complementation of membrane-inexcitable mutants of Paramecium. J Cell Biol. 1983 Aug;97(2):378–382. doi: 10.1083/jcb.97.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Haynes W. J., Ling K. Y., Saimi Y., Kung C. Induction of antibiotic resistance in Paramecium tetraurelia by the bacterial gene APH-3'-II. J Eukaryot Microbiol. 1995 Jan-Feb;42(1):83–91. doi: 10.1111/j.1550-7408.1995.tb01545.x. [DOI] [PubMed] [Google Scholar]
  18. Haynes W. J., Ling K. Y., Saimi Y., Kung C. Toward cloning genes by complementation in Paramecium. J Neurogenet. 1996 Dec;11(1-2):81–98. doi: 10.3109/01677069609107064. [DOI] [PubMed] [Google Scholar]
  19. Hobohm U., Sander C. A sequence property approach to searching protein databases. J Mol Biol. 1995 Aug 18;251(3):390–399. doi: 10.1006/jmbi.1995.0442. [DOI] [PubMed] [Google Scholar]
  20. Jegla T., Salkoff L. A multigene family of novel K+ channels from Paramecium tetraurelia. Receptors Channels. 1995;3(1):51–60. [PubMed] [Google Scholar]
  21. Kanabrocki J. A., Saimi Y., Preston R. R., Haynes W. J., Kung C. Efficient transformation of cam2, a behavioral mutant of Paramecium tetraurelia, with the calmodulin gene. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10845–10849. doi: 10.1073/pnas.88.23.10845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kink J. A., Maley M. E., Preston R. R., Ling K. Y., Wallen-Friedman M. A., Saimi Y., Kung C. Mutations in paramecium calmodulin indicate functional differences between the C-terminal and N-terminal lobes in vivo. Cell. 1990 Jul 13;62(1):165–174. doi: 10.1016/0092-8674(90)90250-i. [DOI] [PubMed] [Google Scholar]
  23. Kung C., Eckert R. Genetic modification of electric properties in an excitable membrane (paramecium-calcium conductance-electrophysiological measurements-membrane mutant). Proc Natl Acad Sci U S A. 1972 Jan;69(1):93–97. doi: 10.1073/pnas.69.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kung C. Genetic dissection of the excitable membrane of Paramecium. Genetics. 1975 Jun;79 (Suppl):423–431. [PubMed] [Google Scholar]
  25. Kung C. Genic mutants with altered system of excitation in Paramecium aurelia. II. Mutagenesis, screening and genetic analysis of the mutants. Genetics. 1971 Sep;69(1):29–45. doi: 10.1093/genetics/69.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kung C., Naito Y. Calcium-induced ciliary reversal in the extracted models of "Pawn", a behavioral mutant of Paramecium. Science. 1973 Jan 12;179(4069):195–196. doi: 10.1126/science.179.4069.195. [DOI] [PubMed] [Google Scholar]
  27. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  28. Lefort-Tran M., Aufderheide K., Pouphile M., Rossignol M., Beisson J. Control of exocytotic processes: cytological and physiological studies of trichocyst mutants in Paramecium tetraurelia. J Cell Biol. 1981 Feb;88(2):301–311. doi: 10.1083/jcb.88.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Machemer H., Eckert R. Electrophysiological control of reversed ciliary beating in Paramecium. J Gen Physiol. 1973 May;61(5):572–587. doi: 10.1085/jgp.61.5.572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Machemer H., Ogura A. Ionic conductances of membranes in ciliated and deciliated Paramecium. J Physiol. 1979 Nov;296:49–60. doi: 10.1113/jphysiol.1979.sp012990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Maryon E. B., Coronado R., Anderson P. unc-68 encodes a ryanodine receptor involved in regulating C. elegans body-wall muscle contraction. J Cell Biol. 1996 Aug;134(4):885–893. doi: 10.1083/jcb.134.4.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nakai K., Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics. 1992 Dec;14(4):897–911. doi: 10.1016/S0888-7543(05)80111-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Preston R. R., Saimi Y., Kung C. Calcium current activated upon hyperpolarization of Paramecium tetraurelia. J Gen Physiol. 1992 Aug;100(2):233–251. doi: 10.1085/jgp.100.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Preston R. R., Saimi Y., Martinac B., Kung C. Genetic analysis of ion channels of prokaryotes and lower eukaryotes. Curr Opin Genet Dev. 1992 Oct;2(5):780–784. doi: 10.1016/s0959-437x(05)80139-x. [DOI] [PubMed] [Google Scholar]
  35. Ramanathan R., Saimi Y., Peterson J. B., Nelson D. L., Kung C. Antibodies to the ciliary membrane of Paramecium tetraurelia alter membrane excitability. J Cell Biol. 1983 Nov;97(5 Pt 1):1421–1428. doi: 10.1083/jcb.97.5.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Russell C. B., Fraga D., Hinrichsen R. D. Extremely short 20-33 nucleotide introns are the standard length in Paramecium tetraurelia. Nucleic Acids Res. 1994 Apr 11;22(7):1221–1225. doi: 10.1093/nar/22.7.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ryan K. A., Garraway L. A., Descoteaux A., Turco S. J., Beverley S. M. Isolation of virulence genes directing surface glycosyl-phosphatidylinositol synthesis by functional complementation of Leishmania. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8609–8613. doi: 10.1073/pnas.90.18.8609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ryan K. A., Garraway L. A., Descoteaux A., Turco S. J., Beverley S. M. Isolation of virulence genes directing surface glycosyl-phosphatidylinositol synthesis by functional complementation of Leishmania. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8609–8613. doi: 10.1073/pnas.90.18.8609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Saimi Y., Ling K. Y. Paramecium Na+ channels activated by Ca(2+)-calmodulin: calmodulin is the Ca2+ sensor in the channel gating mechanism. J Membr Biol. 1995 Apr;144(3):257–265. doi: 10.1007/BF00236839. [DOI] [PubMed] [Google Scholar]
  40. Satow Y., Kung C. Genetic dissection of active electrogenesis in Paramecium aurelia. Nature. 1974 Jan 4;247(5435):69–71. doi: 10.1038/247069a0. [DOI] [PubMed] [Google Scholar]
  41. Satow Y., Kung C. Membrane currents of pawn mutants of the pwA group in Paramecium tetraurelia. J Exp Biol. 1980 Feb;84:57–71. doi: 10.1242/jeb.84.1.57. [DOI] [PubMed] [Google Scholar]
  42. Schafer W. R., Kenyon C. J. A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature. 1995 May 4;375(6526):73–78. doi: 10.1038/375073a0. [DOI] [PubMed] [Google Scholar]
  43. Skouri F., Cohen J. Genetic approach to regulated exocytosis using functional complementation in Paramecium: identification of the ND7 gene required for membrane fusion. Mol Biol Cell. 1997 Jun;8(6):1063–1071. doi: 10.1091/mbc.8.6.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Vallet V., Chraibi A., Gaeggeler H. P., Horisberger J. D., Rossier B. C. An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature. 1997 Oct 9;389(6651):607–610. doi: 10.1038/39329. [DOI] [PubMed] [Google Scholar]
  45. Vashishtha M., Segil G., Hall J. L. Direct complementation of Chlamydomonas mutants with amplified YAC DNA. Genomics. 1996 Sep 15;36(3):459–467. doi: 10.1006/geno.1996.0491. [DOI] [PubMed] [Google Scholar]
  46. Warmke J. W., Reenan R. A., Wang P., Qian S., Arena J. P., Wang J., Wunderler D., Liu K., Kaczorowski G. J., Van der Ploeg L. H. Functional expression of Drosophila para sodium channels. Modulation by the membrane protein TipE and toxin pharmacology. J Gen Physiol. 1997 Aug;110(2):119–133. doi: 10.1085/jgp.110.2.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wilson W., Seebeck T. Identification of a profilin homologue in Trypanosoma brucei by complementation screening. Gene. 1997 Mar 18;187(2):201–209. doi: 10.1016/s0378-1119(96)00749-4. [DOI] [PubMed] [Google Scholar]
  48. Zhang H., Herman P. L., Weeks D. P. Gene isolation through genomic complementation using an indexed library of Chlamydomonas reinhardtii DNA. Plant Mol Biol. 1994 Feb;24(4):663–672. doi: 10.1007/BF00023562. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES