Skip to main content
Genetics logoLink to Genetics
. 1998 Jun;149(2):1153–1162. doi: 10.1093/genetics/149.2.1153

The number of self-incompatibility alleles in a finite, subdivided population.

M H Schierup 1
PMCID: PMC1460178  PMID: 9611223

Abstract

The actual and effective number of gametophytic self-incompatibility alleles maintained at mutation-drift-selection equilibrium in a finite population subdivided as in the island model is investigated by stochastic simulations. The existing theory founded by Wright predicts that for a given population size the number of alleles maintained increases monotonically with decreasing migration as is the case for neutral alleles. The simulation results here show that this is not true. At migration rates above Nm = 0.01-0.1, the actual and effective number of alleles is lower than for an undivided population with the same number of individuals, and, contrary to Wright's theoretical expectation, the number of alleles is not much higher than for an undivided population unless Nm < 0.001. The same pattern is observed in a model where the alleles display symmetrical overdominant selection. This broadens the applicability of the results to include proposed models for the major histocompatibility (MHC) loci. For a subdivided population over a large range of migration rates, it appears that the number of self-incompatibility alleles (or MHC-alleles) observed can provide a rough estimate of the total number of individuals in the population but it underestimates the neutral effective size of the subdivided population.

Full Text

The Full Text of this article is available as a PDF (122.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayala F. J., Escalante A. A. The evolution of human populations: a molecular perspective. Mol Phylogenet Evol. 1996 Feb;5(1):188–201. doi: 10.1006/mpev.1996.0013. [DOI] [PubMed] [Google Scholar]
  2. Ayala F. J. The myth of Eve: molecular biology and human origins. Science. 1995 Dec 22;270(5244):1930–1936. doi: 10.1126/science.270.5244.1930. [DOI] [PubMed] [Google Scholar]
  3. EWENS W. J. THE MAINTENANCE OF ALLELES BY MUTATION. Genetics. 1964 Nov;50:891–898. doi: 10.1093/genetics/50.5.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Emerson S. A Preliminary Survey of the Oenothera Organensis Population. Genetics. 1939 Jun;24(4):524–537. doi: 10.1093/genetics/24.4.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ewens W. J., Ewens P. M. The maintenance of alleles by mutation--Monte Carlo results for normal and self-sterility populations. Heredity (Edinb) 1966 Aug;21(3):371–378. doi: 10.1038/hdy.1966.38. [DOI] [PubMed] [Google Scholar]
  6. FINNEY D. J. The equilibrium of a self-incompatible polymorphic species. Genetica. 1952;26(1):33–64. doi: 10.1007/BF01690614. [DOI] [PubMed] [Google Scholar]
  7. Foote H. C., Ride J. P., Franklin-Tong V. E., Walker E. A., Lawrence M. J., Franklin F. C. Cloning and expression of a distinctive class of self-incompatibility (S) gene from Papaver rhoeas L. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2265–2269. doi: 10.1073/pnas.91.6.2265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ioerger T. R., Clark A. G., Kao T. H. Polymorphism at the self-incompatibility locus in Solanaceae predates speciation. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9732–9735. doi: 10.1073/pnas.87.24.9732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KIMURA M., CROW J. F. THE NUMBER OF ALLELES THAT CAN BE MAINTAINED IN A FINITE POPULATION. Genetics. 1964 Apr;49:725–738. doi: 10.1093/genetics/49.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Klein J., Gutknecht J., Fischer N. The major histocompatibility complex and human evolution. Trends Genet. 1990 Jan;6(1):7–11. doi: 10.1016/0168-9525(90)90042-5. [DOI] [PubMed] [Google Scholar]
  11. Maruyama T. Effective number of alleles in a subdivided population. Theor Popul Biol. 1970 Nov;1(3):273–306. doi: 10.1016/0040-5809(70)90047-x. [DOI] [PubMed] [Google Scholar]
  12. Maruyama T., Nei M. Genetic variability maintained by mutation and overdominant selection in finite populations. Genetics. 1981 Jun;98(2):441–459. doi: 10.1093/genetics/98.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nagylaki T. Homozygosity, effective number of alleles, and interdeme differentiation in subdivided populations. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8611–8613. doi: 10.1073/pnas.82.24.8611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nei M., Takahata N. Effective population size, genetic diversity, and coalescence time in subdivided populations. J Mol Evol. 1993 Sep;37(3):240–244. doi: 10.1007/BF00175500. [DOI] [PubMed] [Google Scholar]
  15. Richman A. D., Kao T. H., Schaeffer S. W., Uyenoyama M. K. S-allele sequence diversity in natural populations of Solanum carolinense (Horsenettle). Heredity (Edinb) 1995 Oct;75(Pt 4):405–415. doi: 10.1038/hdy.1995.153. [DOI] [PubMed] [Google Scholar]
  16. Richman A. D., Uyenoyama M. K., Kohn J. R. S-allele diversity in a natural population of Physalis crassifolia (Solanaceae) (ground cherry) assessed by RT-PCR. Heredity (Edinb) 1996 May;76(Pt 5):497–505. doi: 10.1038/hdy.1996.72. [DOI] [PubMed] [Google Scholar]
  17. Satta Y., O'hUigin C., Takahata N., Klein J. Intensity of natural selection at the major histocompatibility complex loci. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7184–7188. doi: 10.1073/pnas.91.15.7184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Takahata N., Nei M. Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics. 1990 Apr;124(4):967–978. doi: 10.1093/genetics/124.4.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Walker E. A., Ride J. P., Kurup S., Franklin-Tong V. E., Lawrence M. J., Franklin F. C. Molecular analysis of two functional homologues of the S3 allele of the Papaver rhoeas self-incompatibility gene isolated from different populations. Plant Mol Biol. 1996 Mar;30(5):983–994. doi: 10.1007/BF00020809. [DOI] [PubMed] [Google Scholar]
  20. Wright S. The Distribution of Self-Sterility Alleles in Populations. Genetics. 1939 Jun;24(4):538–552. doi: 10.1093/genetics/24.4.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yokoyama S., Nei M. Population dynamics of sex-determining alleles in honey bees and self-incompatibility alleles in plants. Genetics. 1979 Mar;91(3):609–626. doi: 10.1093/genetics/91.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES