Skip to main content
Genetics logoLink to Genetics
. 1998 Jun;149(2):693–701. doi: 10.1093/genetics/149.2.693

Characterization of the putative transposase mRNA of Tag1, which is ubiquitously expressed in Arabidopsis and can be induced by Agrobacterium-mediated transformation with dTag1 DNA.

D Liu 1, N M Crawford 1
PMCID: PMC1460181  PMID: 9611184

Abstract

Tag1 is an autonomous transposable element of Arabidopsis thaliana. Tag1 expression was examined in two ecotypes of Arabidopsis (Columbia and No-0) that were transformed with CaMV 35S-Tag1-GUS DNA. These ecotypes contain no endogenous Tag1 elements. A major 2.3-kb and several minor transcripts were detected in all major organs of the plants. The major transcript encoded a putative transposase of 84.2 kD with two nuclear localization signal sequences and a region conserved among transposases of the Ac or hAT family of elements. The abundance of Tag1 transcripts varied among transgenic lines and did not correlate with somatic excision frequency or germinal reversion rates, suggesting that factors other than transcript levels control Tag1 excision activity. In untransformed plants of the Landsberg ecotype, which contain two endogenous Tag1 elements, no Tag1 transcripts were detected. Agrobacterium-mediated transformation of these Landsberg plants with a defective 1.4-kb Tag1 element resulted in the appearance of full-length Tag1 transcripts from the endogenous elements. Transformation with control DNA containing no Tag1 sequences did not activate endogenous Tag1 expression. These results indicate that Agrobacterium-mediated transformation with dTag1 can activate the expression of Tag1.

Full Text

The Full Text of this article is available as a PDF (259.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhatt A. M., Lister C., Crawford N., Dean C. The transposition frequency of Tag1 elements is increased in transgenic Arabidopsis lines. Plant Cell. 1998 Mar;10(3):427–434. doi: 10.1105/tpc.10.3.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown J. W. A catalogue of splice junction and putative branch point sequences from plant introns. Nucleic Acids Res. 1986 Dec 22;14(24):9549–9559. doi: 10.1093/nar/14.24.9549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Callis J., Fromm M., Walbot V. Introns increase gene expression in cultured maize cells. Genes Dev. 1987 Dec;1(10):1183–1200. doi: 10.1101/gad.1.10.1183. [DOI] [PubMed] [Google Scholar]
  4. Calvi B. R., Hong T. J., Findley S. D., Gelbart W. M. Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell. 1991 Aug 9;66(3):465–471. doi: 10.1016/0092-8674(81)90010-6. [DOI] [PubMed] [Google Scholar]
  5. Chomet P., Lisch D., Hardeman K. J., Chandler V. L., Freeling M. Identification of a regulatory transposon that controls the Mutator transposable element system in maize. Genetics. 1991 Sep;129(1):261–270. doi: 10.1093/genetics/129.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coupland G., Baker B., Schell J., Starlinger P. Characterization of the maize transposable element Ac by internal deletions. EMBO J. 1988 Dec 1;7(12):3653–3659. doi: 10.1002/j.1460-2075.1988.tb03246.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crawford N. M., Campbell W. H., Davis R. W. Nitrate reductase from squash: cDNA cloning and nitrate regulation. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8073–8076. doi: 10.1073/pnas.83.21.8073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frank M. J., Preuss D., Mack A., Kuhlmann T. C., Crawford N. M. The Arabidopsis transposable element Tag1 is widely distributed among Arabidopsis ecotypes. Mol Gen Genet. 1998 Feb;257(4):478–484. doi: 10.1007/pl00008622. [DOI] [PubMed] [Google Scholar]
  9. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gierl A. The En/Spm transposable element of maize. Curr Top Microbiol Immunol. 1996;204:145–159. doi: 10.1007/978-3-642-79795-8_7. [DOI] [PubMed] [Google Scholar]
  11. Goodall G. J., Filipowicz W. The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell. 1989 Aug 11;58(3):473–483. doi: 10.1016/0092-8674(89)90428-5. [DOI] [PubMed] [Google Scholar]
  12. Grappin P., Audeon C., Chupeau M. C., Grandbastien M. A. Molecular and functional characterization of Slide, an Ac-like autonomous transposable element from tobacco. Mol Gen Genet. 1996 Sep 25;252(4):386–397. doi: 10.1007/BF02173003. [DOI] [PubMed] [Google Scholar]
  13. Hershberger R. J., Benito M. I., Hardeman K. J., Warren C., Chandler V. L., Walbot V. Characterization of the major transcripts encoded by the regulatory MuDR transposable element of maize. Genetics. 1995 Jul;140(3):1087–1098. doi: 10.1093/genetics/140.3.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hershberger R. J., Warren C. A., Walbot V. Mutator activity in maize correlates with the presence and expression of the Mu transposable element Mu9. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10198–10202. doi: 10.1073/pnas.88.22.10198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hicks G. R., Smith H. M., Shieh M., Raikhel N. V. Three classes of nuclear import signals bind to plant nuclei. Plant Physiol. 1995 Apr;107(4):1055–1058. doi: 10.1104/pp.107.4.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Joanin P., Hershberger R. J., Benito M. I., Walbot V. Sense and antisense transcripts of the maize MuDR regulatory transposon localized by in situ hybridization. Plant Mol Biol. 1997 Jan;33(1):23–36. doi: 10.1023/a:1005790129668. [DOI] [PubMed] [Google Scholar]
  17. Kempken F., Kück U. restless, an active Ac-like transposon from the fungus Tolypocladium inflatum: structure, expression, and alternative RNA splicing. Mol Cell Biol. 1996 Nov;16(11):6563–6572. doi: 10.1128/mcb.16.11.6563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kunze R. The maize transposable element activator (Ac). Curr Top Microbiol Immunol. 1996;204:161–194. doi: 10.1007/978-3-642-79795-8_8. [DOI] [PubMed] [Google Scholar]
  19. LaBrie S. T., Crawford N. M. A glycine to aspartic acid change in the MoCo domain of nitrate reductase reduces both activity and phosphorylation levels in Arabidopsis. J Biol Chem. 1994 May 20;269(20):14497–14501. [PubMed] [Google Scholar]
  20. Lazo G. R., Stein P. A., Ludwig R. A. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology (N Y) 1991 Oct;9(10):963–967. doi: 10.1038/nbt1091-963. [DOI] [PubMed] [Google Scholar]
  21. Liu D., Crawford N. M. Characterization of the germinal and somatic activity of the Arabidopsis transposable element Tag1. Genetics. 1998 Jan;148(1):445–456. doi: 10.1093/genetics/148.1.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Masson P., Rutherford G., Banks J. A., Fedoroff N. Essential large transcripts of the maize Spm transposable element are generated by alternative splicing. Cell. 1989 Aug 25;58(4):755–765. doi: 10.1016/0092-8674(89)90109-8. [DOI] [PubMed] [Google Scholar]
  23. McBride K. E., Summerfelt K. R. Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Mol Biol. 1990 Feb;14(2):269–276. doi: 10.1007/BF00018567. [DOI] [PubMed] [Google Scholar]
  24. Pohlman R. F., Fedoroff N. V., Messing J. The nucleotide sequence of the maize controlling element Activator. Cell. 1984 Jun;37(2):635–643. doi: 10.1016/0092-8674(84)90395-7. [DOI] [PubMed] [Google Scholar]
  25. Scofield S. R., Harrison K., Nurrish S. J., Jones J. D. Promoter fusions to the Activator transposase gene cause distinct patterns of Dissociation excision in tobacco cotyledons. Plant Cell. 1992 May;4(5):573–582. doi: 10.1105/tpc.4.5.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sieburth L. E., Meyerowitz E. M. Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell. 1997 Mar;9(3):355–365. doi: 10.1105/tpc.9.3.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Swinburne J., Balcells L., Scofield S. R., Jones J. D., Coupland G. Elevated levels of Activator transposase mRNA are associated with high frequencies of Dissociation excision in Arabidopsis. Plant Cell. 1992 May;4(5):583–595. doi: 10.1105/tpc.4.5.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tsay Y. F., Frank M. J., Page T., Dean C., Crawford N. M. Identification of a mobile endogenous transposon in Arabidopsis thaliana. Science. 1993 Apr 16;260(5106):342–344. doi: 10.1126/science.8385803. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES