Skip to main content
Genetics logoLink to Genetics
. 1998 Jun;149(2):703–715. doi: 10.1093/genetics/149.2.703

Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins.

D A Wright 1, D F Voytas 1
PMCID: PMC1460185  PMID: 9611185

Abstract

Tat1 was originally identified as an insertion near the Arabidopsis thaliana SAM1 gene. We provide evidence that Tat1 is a retrotransposon and that previously described insertions are solo long terminal repeats (LTRs) left behind after the deletion of coding regions of full-length elements. Three Tat1 insertions were characterized that have retrotransposon features, including a primer binding site complementary to an A. thaliana asparagine tRNA and an open reading frame (ORF) with approximately 44% amino acid sequence similarity to the gag protein of the Zea mays retrotransposon Zeon-1. Tat1 elements have large, polymorphic 3' noncoding regions that may contain transduced DNA sequences; a 477-base insertion in the 3' noncoding region of the Tat1-3 element contains part of a related retrotransposon and sequences similar to the nontranslated leader sequence of AT-P5C1, a gene for pyrroline-5-carboxylate reductase. Analysis of DNA sequences generated by the A. thaliana genome project identified 10 families of Ty3/gypsy retrotransposons, which share up to 51 and 62% amino-acid similarity to the ORFs of Tat1 and the A. thaliana Athila element, respectively. Phylogenetic analyses resolved the plant Ty3/gypsy elements into two lineages, one of which includes homologs of Tat1 and Athila. Four families of A. thaliana elements within the Tat/Athila lineage encode a conserved ORF after integrase at a position occupied by the envelope gene in retroviruses and in some insect Ty3/gypsy retrotransposons. Like retroviral envelope genes, this ORF encodes a transmembrane domain and, in some insertions, a putative secretory signal sequence. This suggests that Tat/Athila retrotransposons may produce enveloped virions and may be infectious.

Full Text

The Full Text of this article is available as a PDF (345.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bennetzen J. L. The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol. 1996 Sep;4(9):347–353. doi: 10.1016/0966-842x(96)10042-1. [DOI] [PubMed] [Google Scholar]
  3. Braiterman L. T., Boeke J. D. Ty1 in vitro integration: effects of mutations in cis and in trans. Mol Cell Biol. 1994 Sep;14(9):5731–5740. doi: 10.1128/mcb.14.9.5731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bureau T. E., White S. E., Wessler S. R. Transduction of a cellular gene by a plant retroelement. Cell. 1994 May 20;77(4):479–480. doi: 10.1016/0092-8674(94)90210-0. [DOI] [PubMed] [Google Scholar]
  5. Doolittle R. F., Feng D. F., Johnson M. S., McClure M. A. Origins and evolutionary relationships of retroviruses. Q Rev Biol. 1989 Mar;64(1):1–30. doi: 10.1086/416128. [DOI] [PubMed] [Google Scholar]
  6. Grandbastien M. A., Spielmann A., Caboche M. Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature. 1989 Jan 26;337(6205):376–380. doi: 10.1038/337376a0. [DOI] [PubMed] [Google Scholar]
  7. Hirochika H., Sugimoto K., Otsuki Y., Tsugawa H., Kanda M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7783–7788. doi: 10.1073/pnas.93.15.7783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hu W., Das O. P., Messing J. Zeon-1, a member of a new maize retrotransposon family. Mol Gen Genet. 1995 Aug 30;248(4):471–480. doi: 10.1007/BF02191647. [DOI] [PubMed] [Google Scholar]
  9. Jin Y. K., Bennetzen J. L. Integration and nonrandom mutation of a plasma membrane proton ATPase gene fragment within the Bs1 retroelement of maize. Plant Cell. 1994 Aug;6(8):1177–1186. doi: 10.1105/tpc.6.8.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kim A., Terzian C., Santamaria P., Pélisson A., Purd'homme N., Bucheton A. Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1285–1289. doi: 10.1073/pnas.91.4.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Knoop V., Unseld M., Marienfeld J., Brandt P., Sünkel S., Ullrich H., Brennicke A. copia-, gypsy- and LINE-like retrotransposon fragments in the mitochondrial genome of Arabidopsis thaliana. Genetics. 1996 Feb;142(2):579–585. doi: 10.1093/genetics/142.2.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Konieczny A., Voytas D. F., Cummings M. P., Ausubel F. M. A superfamily of Arabidopsis thaliana retrotransposons. Genetics. 1991 Apr;127(4):801–809. doi: 10.1093/genetics/127.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lowe T. M., Eddy S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997 Mar 1;25(5):955–964. doi: 10.1093/nar/25.5.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Maestre J., Tchénio T., Dhellin O., Heidmann T. mRNA retroposition in human cells: processed pseudogene formation. EMBO J. 1995 Dec 15;14(24):6333–6338. doi: 10.1002/j.1460-2075.1995.tb00324.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marck C. 'DNA Strider': a 'C' program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res. 1988 Mar 11;16(5):1829–1836. doi: 10.1093/nar/16.5.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Peleman J., Cottyn B., Van Camp W., Van Montagu M., Inzé D. Transient occurrence of extrachromosomal DNA of an Arabidopsis thaliana transposon-like element, Tat1. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3618–3622. doi: 10.1073/pnas.88.9.3618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Purugganan M. D., Wessler S. R. Molecular evolution of magellan, a maize Ty3/gypsy-like retrotransposon. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11674–11678. doi: 10.1073/pnas.91.24.11674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pélissier T., Tutois S., Deragon J. M., Tourmente S., Genestier S., Picard G. Athila, a new retroelement from Arabidopsis thaliana. Plant Mol Biol. 1995 Nov;29(3):441–452. doi: 10.1007/BF00020976. [DOI] [PubMed] [Google Scholar]
  19. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  20. SanMiguel P., Tikhonov A., Jin Y. K., Motchoulskaia N., Zakharov D., Melake-Berhan A., Springer P. S., Edwards K. J., Lee M., Avramova Z. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996 Nov 1;274(5288):765–768. doi: 10.1126/science.274.5288.765. [DOI] [PubMed] [Google Scholar]
  21. Song S. U., Gerasimova T., Kurkulos M., Boeke J. D., Corces V. G. An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. Genes Dev. 1994 Sep 1;8(17):2046–2057. doi: 10.1101/gad.8.17.2046. [DOI] [PubMed] [Google Scholar]
  22. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Voytas D. F., Ausubel F. M. A copia-like transposable element family in Arabidopsis thaliana. Nature. 1988 Nov 17;336(6196):242–244. doi: 10.1038/336242a0. [DOI] [PubMed] [Google Scholar]
  24. Voytas D. F., Konieczny A., Cummings M. P., Ausubel F. M. The structure, distribution and evolution of the Ta1 retrotransposable element family of Arabidopsis thaliana. Genetics. 1990 Nov;126(3):713–721. doi: 10.1093/genetics/126.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Voytas D. F. Retroelements in genome organization. Science. 1996 Nov 1;274(5288):737–738. doi: 10.1126/science.274.5288.737. [DOI] [PubMed] [Google Scholar]
  26. White S. E., Habera L. F., Wessler S. R. Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11792–11796. doi: 10.1073/pnas.91.25.11792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wright D. A., Ke N., Smalle J., Hauge B. M., Goodman H. M., Voytas D. F. Multiple non-LTR retrotransposons in the genome of Arabidopsis thaliana. Genetics. 1996 Feb;142(2):569–578. doi: 10.1093/genetics/142.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES