Abstract
Arabidopsis contains five isoenzymes of aspartate aminotransferase (AspAT) localized to the cytosol, chloroplast, mitochondria, or peroxisomes. To define the in vivo function of individual isoenzymes, we screened for Arabidopsis mutants deficient in either of the two major isoenzymes, cytosolic AAT2 or chloroplastic AAT3, using a native gel activity assay. In a screen of 8,000 M2 seedlings, three independent mutants deficient in cytosolic AAT2 (aat2) and two independent mutants deficient in chloroplastic AAT3 (aat3) were isolated. Mapping of aat2 and aat3 mutations and the five AspAT genes (ASP1-ASP5) established associations as follows: the mutation affecting aat2 maps with and cosegregates with ASP2, one of two expressed genes for cytosolic AspAT; the mutation affecting aat3 maps to the same location as the ASP5 gene encoding chloroplastic AspAT. Phenotypic analysis of the aat2 and aat3 mutants revealed a dramatic aspartate-related phenotype in one of the mutants deficient in cytosolic AAT2. The aat2-2 mutant displays an 80% reduction in levels of aspartate transported in the phloem of light-grown plants, and a 50% reduction in levels of asparagine transported in dark-adapted plants. These results indicate that cytosolic AAT2 is the major isoenzyme controlling aspartate synthesized for nitrogen transport in the light, and that this aspartate pool is converted to asparagine when plants are dark adapted.
Full Text
The Full Text of this article is available as a PDF (310.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
- Carvalho H., Pereira S., Sunkel C., Salema R. Detection of a Cytosolic Glutamine Synthetase in Leaves of Nicotiana tabacum L. by Immunocytochemical Methods. Plant Physiol. 1992 Nov;100(3):1591–1594. doi: 10.1104/pp.100.3.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards J. W., Walker E. L., Coruzzi G. M. Cell-specific expression in transgenic plants reveals nonoverlapping roles for chloroplast and cytosolic glutamine synthetase. Proc Natl Acad Sci U S A. 1990 May;87(9):3459–3463. doi: 10.1073/pnas.87.9.3459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forde B. G., Day H. M., Turton J. F., Shen W. J., Cullimore J. V., Oliver J. E. Two glutamine synthetase genes from Phaseolus vulgaris L. display contrasting developmental and spatial patterns of expression in transgenic Lotus corniculatus plants. Plant Cell. 1989 Apr;1(4):391–401. doi: 10.1105/tpc.1.4.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konieczny A., Ausubel F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. doi: 10.1046/j.1365-313x.1993.04020403.x. [DOI] [PubMed] [Google Scholar]
- Lam H. M., Coschigano K., Schultz C., Melo-Oliveira R., Tjaden G., Oliveira I., Ngai N., Hsieh M. H., Coruzzi G. Use of Arabidopsis mutants and genes to study amide amino acid biosynthesis. Plant Cell. 1995 Jul;7(7):887–898. doi: 10.1105/tpc.7.7.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lam H. M., Peng S. S., Coruzzi G. M. Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana. Plant Physiol. 1994 Dec;106(4):1347–1357. doi: 10.1104/pp.106.4.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Last R. L., Bissinger P. H., Mahoney D. J., Radwanski E. R., Fink G. R. Tryptophan mutants in Arabidopsis: the consequences of duplicated tryptophan synthase beta genes. Plant Cell. 1991 Apr;3(4):345–358. doi: 10.1105/tpc.3.4.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Last R. L., Fink G. R. Tryptophan-Requiring Mutants of the Plant Arabidopsis thaliana. Science. 1988 Apr 15;240(4850):305–310. doi: 10.1126/science.240.4850.305. [DOI] [PubMed] [Google Scholar]
- Liu K. D., Huang A. H. Subcellular Localization and Developmental Changes of Aspartate-alpha-Ketoglutarate Transaminase Isozymes in the Cotyledons of Cucumber Seedlings. Plant Physiol. 1977 May;59(5):777–782. doi: 10.1104/pp.59.5.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterman T. K., Goodman H. M. The glutamine synthetase gene family of Arabidopsis thaliana: light-regulation and differential expression in leaves, roots and seeds. Mol Gen Genet. 1991 Nov;230(1-2):145–154. doi: 10.1007/BF00290662. [DOI] [PubMed] [Google Scholar]
- Rose A. B., Li J., Last R. L. An allelic series of blue fluorescent trp1 mutants of Arabidopsis thaliana. Genetics. 1997 Jan;145(1):197–205. doi: 10.1093/genetics/145.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz C. J., Coruzzi G. M. The aspartate aminotransferase gene family of Arabidopsis encodes isoenzymes localized to three distinct subcellular compartments. Plant J. 1995 Jan;7(1):61–75. doi: 10.1046/j.1365-313x.1995.07010061.x. [DOI] [PubMed] [Google Scholar]
- Urquhart A. A., Joy K. W. Use of Phloem exudate technique in the study of amino Acid transport in pea plants. Plant Physiol. 1981 Sep;68(3):750–754. doi: 10.1104/pp.68.3.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallsgrove R. M., Turner J. C., Hall N. P., Kendall A. C., Bright S. W. Barley mutants lacking chloroplast glutamine synthetase-biochemical and genetic analysis. Plant Physiol. 1987 Jan;83(1):155–158. doi: 10.1104/pp.83.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkie S. E., Lambert R., Warren M. J. Chloroplastic aspartate aminotransferase from Arabidopsis thaliana: an examination of the relationship between the structure of the gene and the spatial structure of the protein. Biochem J. 1996 Nov 1;319(Pt 3):969–976. doi: 10.1042/bj3190969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkie S. E., Roper J. M., Smith A. G., Warren M. J. Isolation, characterisation and expression of a cDNA clone encoding plastid aspartate aminotransferase from Arabidopsis thaliana. Plant Mol Biol. 1995 Mar;27(6):1227–1233. doi: 10.1007/BF00020897. [DOI] [PubMed] [Google Scholar]