Skip to main content
Genetics logoLink to Genetics
. 1998 Jun;149(2):549–563. doi: 10.1093/genetics/149.2.549

Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions.

A P Mordhorst 1, K J Voerman 1, M V Hartog 1, E A Meijer 1, J van Went 1, M Koornneef 1, S C de Vries 1
PMCID: PMC1460201  PMID: 9611173

Abstract

Embryogenesis in plants can commence from cells other than the fertilized egg cell. Embryogenesis initiated from somatic cells in vitro is an attractive system for studying early embryonic stages when they are accessible to experimental manipulation. Somatic embryogenesis in Arabidopsis offers the additional advantage that many zygotic embryo mutants can be studied under in vitro conditions. Two systems are available. The first employs immature zygotic embryos as starting material, yielding continuously growing embryogenic cultures in liquid medium. This is possible in at least 11 ecotypes. A second, more efficient and reproducible system, employing the primordia timing mutant (pt allelic to hpt, cop2, and amp1), was established. A significant advantage of the pt mutant is that intact seeds, germinated in 2,4-dichlorophenoxyacetic acid (2, 4-D) containing liquid medium, give rise to stable embryonic cell cultures, circumventing tedious hand dissection of immature zygotic embryos. pt zygotic embryos are first distinguishable from wild type at early heart stage by a broader embryonic shoot apical meristem (SAM). In culture, embryogenic clusters originate from the enlarged SAMs. pt somatic embryos had all characteristic embryo pattern elements seen in zygotic embryos, but with higher and more variable numbers of cells. Embryogenic cell cultures were also established from seedling, of other mutants with enlarged SAMs, such as clavata (clv). pt clv double mutants showed additive effects on SAM size and an even higher frequency of seedlings producing embryogenic cell lines. pt clv double mutant plants had very short fasciated inflorescence stems and additive effects on the number of rosette leaves. This suggests that the PT and CLV genes act in independent pathways that control SAM size. An increased population of noncommitted SAM cells may be responsible for facilitated establishment of somatic embryogenesis in Arabidopsis.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clark S. E., Running M. P., Meyerowitz E. M. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development. 1993 Oct;119(2):397–418. doi: 10.1242/dev.119.2.397. [DOI] [PubMed] [Google Scholar]
  2. Clark S. E., Williams R. W., Meyerowitz E. M. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell. 1997 May 16;89(4):575–585. doi: 10.1016/s0092-8674(00)80239-1. [DOI] [PubMed] [Google Scholar]
  3. Conway L. J., Poethig R. S. Mutations of Arabidopsis thaliana that transform leaves into cotyledons. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10209–10214. doi: 10.1073/pnas.94.19.10209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dolan L., Janmaat K., Willemsen V., Linstead P., Poethig S., Roberts K., Scheres B. Cellular organisation of the Arabidopsis thaliana root. Development. 1993 Sep;119(1):71–84. doi: 10.1242/dev.119.1.71. [DOI] [PubMed] [Google Scholar]
  5. Gamborg O. L., Miller R. A., Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res. 1968 Apr;50(1):151–158. doi: 10.1016/0014-4827(68)90403-5. [DOI] [PubMed] [Google Scholar]
  6. Grayburn W. S., Green P. B., Steucek G. Bud Induction with Cytokinin : A LOCAL RESPONSE TO LOCAL APPLICATION. Plant Physiol. 1982 Mar;69(3):682–686. doi: 10.1104/pp.69.3.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jürgens G., Torres Ruiz R. A., Berleth T. Embryonic pattern formation in flowering plants. Annu Rev Genet. 1994;28:351–371. doi: 10.1146/annurev.ge.28.120194.002031. [DOI] [PubMed] [Google Scholar]
  8. Liu Cm., Xu Zh., Chua N. H. Auxin Polar Transport Is Essential for the Establishment of Bilateral Symmetry during Early Plant Embryogenesis. Plant Cell. 1993 Jun;5(6):621–630. doi: 10.1105/tpc.5.6.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Luo Y., Koop H. U. Somatic embryogenesis in cultured immature zygotic embryos and leaf protoplasts of Arabidopsis thaliana ecotypes. Planta. 1997;202(3):387–396. doi: 10.1007/s004250050141. [DOI] [PubMed] [Google Scholar]
  10. Meyerowitz E. M. Genetic control of cell division patterns in developing plants. Cell. 1997 Feb 7;88(3):299–308. doi: 10.1016/s0092-8674(00)81868-1. [DOI] [PubMed] [Google Scholar]
  11. Ogas J., Cheng J. C., Sung Z. R., Somerville C. Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant. Science. 1997 Jul 4;277(5322):91–94. doi: 10.1126/science.277.5322.91. [DOI] [PubMed] [Google Scholar]
  12. Okada K., Ueda J., Komaki M. K., Bell C. J., Shimura Y. Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. Plant Cell. 1991 Jul;3(7):677–684. doi: 10.1105/tpc.3.7.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pillon E., Terzi M., Baldan B., Mariani P., Lo Schiavo F. L. A protocol for obtaining embryogenic cell lines from Arabidopsis. Plant J. 1996 Apr;9(4):573–577. doi: 10.1046/j.1365-313x.1996.09040573.x. [DOI] [PubMed] [Google Scholar]
  14. Plant H. W., Steele P. TREATMENT OF SEROUS EFFUSIONS BY INJECTION OF ADRENALIN CHLORIDE. Br Med J. 1905 Jul 15;2(2324):125–126. doi: 10.1136/bmj.2.2324.125-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schmidt E. D., Guzzo F., Toonen M. A., de Vries S. C. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development. 1997 May;124(10):2049–2062. doi: 10.1242/dev.124.10.2049. [DOI] [PubMed] [Google Scholar]
  16. Telfer A., Bollman K. M., Poethig R. S. Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development. 1997 Feb;124(3):645–654. doi: 10.1242/dev.124.3.645. [DOI] [PubMed] [Google Scholar]
  17. Torres-Ruiz R. A., Jürgens G. Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development. Development. 1994 Oct;120(10):2967–2978. doi: 10.1242/dev.120.10.2967. [DOI] [PubMed] [Google Scholar]
  18. Zimmerman J. L. Somatic Embryogenesis: A Model for Early Development in Higher Plants. Plant Cell. 1993 Oct;5(10):1411–1423. doi: 10.1105/tpc.5.10.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES