Abstract
We have analyzed the flowering behavior of two Arabidopsis ecotypes: the laboratory strain Landsberg erecta (Ler) and an ecotype from the tropical Cape Verde Islands (Cvi). They differ little in their flowering phenotypes and in their responses to photoperiod length changes and to vernalization treatment. However, segregating populations derived from crosses between them showed a much larger variation. An approach of quantitative trait locus (QTL) mapping in recombinant inbred lines (RILs) grown under three environments differing in day-length and/or vernalization treatment has been used to detect and locate flowering loci. Four main QTLs were identified, designated early day-length insensitive (EDI), flowering F, G, and H (FLF, FLG, and FLH, respectively), to which most of the flowering behavior differences could be attributed. To further characterize the individual loci, near isogenic lines were constructed by introgressing Cvi early alleles of EDI and FLH into the Ler genetic background. EDI-Cvi alleles produce earliness under both long- and short-day photoperiods, rendering Ler plants almost day-length neutral. In addition, RILs were selected to analyze FLF and FLG. These loci interact epistatically and RILs carrying late alleles at FLF and FLG were very responsive to vernalization and showed an increased response to photoperiod length changes. The possible role of these loci for the control of flowering is discussed in the context of the current Arabidopsis model.
Full Text
The Full Text of this article is available as a PDF (392.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alonso-Blanco C., Peeters A. J., Koornneef M., Lister C., Dean C., van den Bosch N., Pot J., Kuiper M. T. Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J. 1998 Apr;14(2):259–271. doi: 10.1046/j.1365-313x.1998.00115.x. [DOI] [PubMed] [Google Scholar]
- Amasino R. M. Control of flowering time in plants. Curr Opin Genet Dev. 1996 Aug;6(4):480–487. doi: 10.1016/s0959-437x(96)80071-2. [DOI] [PubMed] [Google Scholar]
- Bagnall D. J., King R. W., Hangarter R. P. Blue-light promotion of flowering is absent in hy4 mutants of Arabidopsis. Planta. 1996;200(2):278–280. doi: 10.1007/BF00208319. [DOI] [PubMed] [Google Scholar]
- Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
- Chandler J., Wilson A., Dean C. Arabidopsis mutants showing an altered response to vernalization. Plant J. 1996 Oct;10(4):637–644. doi: 10.1046/j.1365-313x.1996.10040637.x. [DOI] [PubMed] [Google Scholar]
- Clarke J. H., Dean C. Mapping FRI, a locus controlling flowering time and vernalization response in Arabidopsis thaliana. Mol Gen Genet. 1994 Jan;242(1):81–89. doi: 10.1007/BF00277351. [DOI] [PubMed] [Google Scholar]
- Coupland G. Genetic and environmental control of flowering time in Arabidopsis. Trends Genet. 1995 Oct;11(10):393–397. doi: 10.1016/s0168-9525(00)89122-2. [DOI] [PubMed] [Google Scholar]
- Grbić B., Bleecker A. B. An altered body plan is conferred on Arabidopsis plants carrying dominant alleles of two genes. Development. 1996 Aug;122(8):2395–2403. doi: 10.1242/dev.122.8.2395. [DOI] [PubMed] [Google Scholar]
- Guo H., Yang H., Mockler T. C., Lin C. Regulation of flowering time by Arabidopsis photoreceptors. Science. 1998 Feb 27;279(5355):1360–1363. doi: 10.1126/science.279.5355.1360. [DOI] [PubMed] [Google Scholar]
- Hicks K. A., Millar A. J., Carré I. A., Somers D. E., Straume M., Meeks-Wagner D. R., Kay S. A. Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science. 1996 Nov 1;274(5288):790–792. doi: 10.1126/science.274.5288.790. [DOI] [PubMed] [Google Scholar]
- Jansen R. C., Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994 Apr;136(4):1447–1455. doi: 10.1093/genetics/136.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konieczny A., Ausubel F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. doi: 10.1046/j.1365-313x.1993.04020403.x. [DOI] [PubMed] [Google Scholar]
- Koornneef M., Alonso-Blanco C., Blankestijn-de Vries H., Hanhart C. J., Peeters A. J. Genetic interactions among late-flowering mutants of Arabidopsis. Genetics. 1998 Feb;148(2):885–892. doi: 10.1093/genetics/148.2.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koornneef M., Hanhart C. J., van der Veen J. H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet. 1991 Sep;229(1):57–66. doi: 10.1007/BF00264213. [DOI] [PubMed] [Google Scholar]
- Koornneef Maarten, Alonso-Blanco Carlos, Peeters Anton J. M., Soppe Wim. GENETIC CONTROL OF FLOWERING TIME IN ARABIDOPSIS. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):345–370. doi: 10.1146/annurev.arplant.49.1.345. [DOI] [PubMed] [Google Scholar]
- Kowalski S. P., Lan T. H., Feldmann K. A., Paterson A. H. QTL mapping of naturally-occurring variation in flowering time of Arabidopsis thaliana. Mol Gen Genet. 1994 Dec 1;245(5):548–555. doi: 10.1007/BF00282217. [DOI] [PubMed] [Google Scholar]
- Lee I., Bleecker A., Amasino R. Analysis of naturally occurring late flowering in Arabidopsis thaliana. Mol Gen Genet. 1993 Feb;237(1-2):171–176. doi: 10.1007/BF00282798. [DOI] [PubMed] [Google Scholar]
- Macknight R., Bancroft I., Page T., Lister C., Schmidt R., Love K., Westphal L., Murphy G., Sherson S., Cobbett C. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell. 1997 May 30;89(5):737–745. doi: 10.1016/s0092-8674(00)80256-1. [DOI] [PubMed] [Google Scholar]
- Putterill J., Robson F., Lee K., Simon R., Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell. 1995 Mar 24;80(6):847–857. doi: 10.1016/0092-8674(95)90288-0. [DOI] [PubMed] [Google Scholar]
- Sanda S. L., Amasino R. M. Ecotype-Specific Expression of a Flowering Mutant Phenotype in Arabidopsis thaliana. Plant Physiol. 1996 Jun;111(2):641–644. doi: 10.1104/pp.111.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanda S. L., Amasino R. M. Interaction of FLC and late-flowering mutations in Arabidopsis thaliana. Mol Gen Genet. 1996 Apr 24;251(1):69–74. doi: 10.1007/BF02174346. [DOI] [PubMed] [Google Scholar]
- Sanda S., John M., Amasino R. Analysis of flowering time in ecotypes of Arabidopsis thaliana. J Hered. 1997 Jan-Feb;88(1):69–72. doi: 10.1093/oxfordjournals.jhered.a023061. [DOI] [PubMed] [Google Scholar]
- Simon R., Igeño M. I., Coupland G. Activation of floral meristem identity genes in Arabidopsis. Nature. 1996 Nov 7;384(6604):59–62. doi: 10.1038/384059a0. [DOI] [PubMed] [Google Scholar]
- Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995 Nov 11;23(21):4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson R. N., Heckman J. W., Somerville C. R. Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days. Plant Physiol. 1992 Sep;100(1):403–408. doi: 10.1104/pp.100.1.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Der Schaar W., Alonso-Blanco C., Léon-Kloosterziel K. M., Jansen R. C., van Ooijen J. W., Koornneef M. QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping. Heredity (Edinb) 1997 Aug;79(Pt 2):190–200. doi: 10.1038/hdy.1997.142. [DOI] [PubMed] [Google Scholar]