Skip to main content
Genetics logoLink to Genetics
. 1998 Jun;149(2):1081–1088. doi: 10.1093/genetics/149.2.1081

Gene silencing by DNA methylation and dual inheritance in Chinese hamster ovary cells.

R P Paulin 1, T Ho 1, H J Balzer 1, R Holliday 1
PMCID: PMC1460210  PMID: 9611215

Abstract

Chinese hamster ovary (CHO) cells strain D422, which has one copy of the adenine phosphoribosyl transferase (APRT) gene, were permeabilized by electroporation and treated with 5-methyl deoxycytidine triphosphate. Cells with a silenced APRT gene were selected on 2, 6-diaminopurine. Colonies were isolated and shown to be reactivated to APRT+ by 5-aza-cytidine and by selection in medium containing adenine, aminopterin and thymidine. Genomic DNA was prepared from eight isolates of independent origin and subjected to bisulphite treatment. This deaminates cytosine to uracil in single-stranded DNA but does not deaminate 5-methyl cytosine. PCR, cloning and sequencing revealed the methylation pattern of CpG doublets in the promoter region of the APRT- gene, whereas the active APRT gene had nonmethylated DNA. CHO strain K1, which has two copies of the APRT+ gene, could also be silenced by the same procedure but at a lower frequency. The availability of the 5-methyl dCTP-induced silencing, 5-aza-CR and a standard mutagen, ethyl methane sulphonate, makes it possible to follow concomitantly the inheritance of active, mutant or silenced gene copies. This analysis demonstrates "dual inheritance" at the APRT locus in CHO cells.

Full Text

The Full Text of this article is available as a PDF (104.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyes J., Bird A. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell. 1991 Mar 22;64(6):1123–1134. doi: 10.1016/0092-8674(91)90267-3. [DOI] [PubMed] [Google Scholar]
  2. Boyes J., Bird A. Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. EMBO J. 1992 Jan;11(1):327–333. doi: 10.1002/j.1460-2075.1992.tb05055.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brandeis M., Frank D., Keshet I., Siegfried Z., Mendelsohn M., Nemes A., Temper V., Razin A., Cedar H. Sp1 elements protect a CpG island from de novo methylation. Nature. 1994 Sep 29;371(6496):435–438. doi: 10.1038/371435a0. [DOI] [PubMed] [Google Scholar]
  4. Chasin L. A. Mutations affecting adenine phosphoribosyl transferase activity in Chinese hamster cells. Cell. 1974 May;2(1):37–41. doi: 10.1016/0092-8674(74)90006-3. [DOI] [PubMed] [Google Scholar]
  5. Clark S. J., Harrison J., Paul C. L., Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 1994 Aug 11;22(15):2990–2997. doi: 10.1093/nar/22.15.2990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooper G. E., Bishop P. L., Turker M. S. Hemidemethylation is sufficient for chromatin relaxation and transcriptional activation of methylated aprt gene in mouse P19 embryonal carcinoma cell line. Somat Cell Mol Genet. 1993 May;19(3):221–229. doi: 10.1007/BF01233070. [DOI] [PubMed] [Google Scholar]
  7. Cooper G. E., Khattar N. H., Bishop P. L., Turker M. S. At least two distinct epigenetic mechanisms are correlated with high-frequency "switching" for APRT phenotypic expression in mouse embryonal carcinoma stem cells. Somat Cell Mol Genet. 1992 May;18(3):215–225. doi: 10.1007/BF01233858. [DOI] [PubMed] [Google Scholar]
  8. Frommer M., McDonald L. E., Millar D. S., Collis C. M., Watt F., Grigg G. W., Molloy P. L., Paul C. L. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1827–1831. doi: 10.1073/pnas.89.5.1827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grigg G., Clark S. Sequencing 5-methylcytosine residues in genomic DNA. Bioessays. 1994 Jun;16(6):431–436. doi: 10.1002/bies.950160612. [DOI] [PubMed] [Google Scholar]
  10. Holliday R., Ho T. Evidence for allelic exclusion in Chinese hamster ovary cells. New Biol. 1990 Aug;2(8):719–726. [PubMed] [Google Scholar]
  11. Holliday R., Ho T. Gene silencing in mammalian cells by uptake of 5-methyl deoxycytidine-5'-triphosphate. Somat Cell Mol Genet. 1991 Nov;17(6):537–542. doi: 10.1007/BF01233618. [DOI] [PubMed] [Google Scholar]
  12. Hsieh C. L. Dependence of transcriptional repression on CpG methylation density. Mol Cell Biol. 1994 Aug;14(8):5487–5494. doi: 10.1128/mcb.14.8.5487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jones G. E., Sargent P. A. Mutants of cultured chinese hamster cells deficient in adenine phosphoribosyl transferase. Cell. 1974 May;2(1):43–54. doi: 10.1016/0092-8674(74)90007-5. [DOI] [PubMed] [Google Scholar]
  14. Meuth M. The structure of mutation in mammalian cells. Biochim Biophys Acta. 1990 Jun 1;1032(1):1–17. doi: 10.1016/0304-419x(90)90009-p. [DOI] [PubMed] [Google Scholar]
  15. Molloy P. L., Watt F. DNA methylation and specific protein-DNA interactions. Philos Trans R Soc Lond B Biol Sci. 1990 Jan 30;326(1235):267–275. doi: 10.1098/rstb.1990.0010. [DOI] [PubMed] [Google Scholar]
  16. Mummaneni P., Walker K. A., Bishop P. L., Turker M. S. Epigenetic gene inactivation induced by a cis-acting methylation center. J Biol Chem. 1995 Jan 13;270(2):788–792. doi: 10.1074/jbc.270.2.788. [DOI] [PubMed] [Google Scholar]
  17. Nalbantoglu J., Goncalves O., Meuth M. Structure of mutant alleles at the aprt locus of Chinese hamster ovary cells. J Mol Biol. 1983 Jul 5;167(3):575–594. doi: 10.1016/s0022-2836(83)80099-0. [DOI] [PubMed] [Google Scholar]
  18. Nalbantoglu J., Phear G. A., Meuth M. Nucleotide sequence of hamster adenine phosphoribosyl transferase (aprt) gene. Nucleic Acids Res. 1986 Feb 25;14(4):1914–1914. doi: 10.1093/nar/14.4.1914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nyce J. Gene silencing in mammalian cells by direct incorporation of electroporated 5-methyl-2'-deoxycytidine 5'-triphosphate. Somat Cell Mol Genet. 1991 Nov;17(6):543–550. doi: 10.1007/BF01233619. [DOI] [PubMed] [Google Scholar]
  20. Orend G., Kuhlmann I., Doerfler W. Spreading of DNA methylation across integrated foreign (adenovirus type 12) genomes in mammalian cells. J Virol. 1991 Aug;65(8):4301–4308. doi: 10.1128/jvi.65.8.4301-4308.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Park J. H., Taylor M. W. Analysis of signals controlling expression of the Chinese hamster ovary aprt gene. Mol Cell Biol. 1988 Jun;8(6):2536–2544. doi: 10.1128/mcb.8.6.2536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pfeifer G. P., Steigerwald S. D., Hansen R. S., Gartler S. M., Riggs A. D. Polymerase chain reaction-aided genomic sequencing of an X chromosome-linked CpG island: methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state stability. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8252–8256. doi: 10.1073/pnas.87.21.8252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sakai T., Toguchida J., Ohtani N., Yandell D. W., Rapaport J. M., Dryja T. P. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet. 1991 May;48(5):880–888. [PMC free article] [PubMed] [Google Scholar]
  24. Santi D. V., Norment A., Garrett C. E. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci U S A. 1984 Nov;81(22):6993–6997. doi: 10.1073/pnas.81.22.6993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stein R., Razin A., Cedar H. In vitro methylation of the hamster adenine phosphoribosyltransferase gene inhibits its expression in mouse L cells. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3418–3422. doi: 10.1073/pnas.79.11.3418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stirzaker C., Millar D. S., Paul C. L., Warnecke P. M., Harrison J., Vincent P. C., Frommer M., Clark S. J. Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors. Cancer Res. 1997 Jun 1;57(11):2229–2237. [PubMed] [Google Scholar]
  27. Tasseron-de Jong J., Aker J., den Dulk H., van de Putte P., Giphart-Gassler M. Cytosine methylation in the EcoRI site of active and inactive herpesvirus thymidine kinase promoters. Biochim Biophys Acta. 1989 Jun 1;1008(1):62–70. doi: 10.1016/0167-4781(89)90170-x. [DOI] [PubMed] [Google Scholar]
  28. Toth M., Lichtenberg U., Doerfler W. Genomic sequencing reveals a 5-methylcytosine-free domain in active promoters and the spreading of preimposed methylation patterns. Proc Natl Acad Sci U S A. 1989 May;86(10):3728–3732. doi: 10.1073/pnas.86.10.3728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Toth M., Müller U., Doerfler W. Establishment of de novo DNA methylation patterns. Transcription factor binding and deoxycytidine methylation at CpG and non-CpG sequences in an integrated adenovirus promoter. J Mol Biol. 1990 Aug 5;214(3):673–683. doi: 10.1016/0022-2836(90)90285-T. [DOI] [PubMed] [Google Scholar]
  30. Wilson V. L., Jones P. A. DNA methylation decreases in aging but not in immortal cells. Science. 1983 Jun 3;220(4601):1055–1057. doi: 10.1126/science.6844925. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES