Skip to main content
Genetics logoLink to Genetics
. 1998 Jul;149(3):1323–1334. doi: 10.1093/genetics/149.3.1323

A new marker for mosaic analysis in Caenorhabditis elegans indicates a fusion between hyp6 and hyp7, two major components of the hypodermis.

J Yochem 1, T Gu 1, M Han 1
PMCID: PMC1460238  PMID: 9649523

Abstract

A fusion of the sur-5 protein to the green fluorescent protein containing a nuclear localization signal is demonstrated as a marker for genetic mosaic analysis in the nematode Caenorhabditis elegans. Because of an extensive accumulation of bright fluorescence in many nuclei, normal growth plates, each containing hundreds of worms, can be rapidly screened with a dissecting microscope for rare mosaic individuals. As the marker can also be used to detect transgenic worms, the construction of strains for mosaic analyses can be minimized. In the course of examining rare mosaic animals, an unexpected pattern of fluorescence was noticed for hyp6, a syncytial component of the hypodermis, which indicated that the marker may serve as a means of assessing cellular fusions during development. Immunofluorescent staining of adherens junctions confirmed a postembryonic fusion of hyp6 with hyp7, the major syncytium of the hypodermis.

Full Text

The Full Text of this article is available as a PDF (393.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bettinger J. C., Lee K., Rougvie A. E. Stage-specific accumulation of the terminal differentiation factor LIN-29 during Caenorhabditis elegans development. Development. 1996 Aug;122(8):2517–2527. doi: 10.1242/dev.122.8.2517. [DOI] [PubMed] [Google Scholar]
  2. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D. C. Green fluorescent protein as a marker for gene expression. Science. 1994 Feb 11;263(5148):802–805. doi: 10.1126/science.8303295. [DOI] [PubMed] [Google Scholar]
  4. Finney M., Ruvkun G. The unc-86 gene product couples cell lineage and cell identity in C. elegans. Cell. 1990 Nov 30;63(5):895–905. doi: 10.1016/0092-8674(90)90493-x. [DOI] [PubMed] [Google Scholar]
  5. Hedgecock E. M., Herman R. K. The ncl-1 gene and genetic mosaics of Caenorhabditis elegans. Genetics. 1995 Nov;141(3):989–1006. doi: 10.1093/genetics/141.3.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Heim R., Cubitt A. B., Tsien R. Y. Improved green fluorescence. Nature. 1995 Feb 23;373(6516):663–664. doi: 10.1038/373663b0. [DOI] [PubMed] [Google Scholar]
  7. Herman M. A., Vassilieva L. L., Horvitz H. R., Shaw J. E., Herman R. K. The C. elegans gene lin-44, which controls the polarity of certain asymmetric cell divisions, encodes a Wnt protein and acts cell nonautonomously. Cell. 1995 Oct 6;83(1):101–110. doi: 10.1016/0092-8674(95)90238-4. [DOI] [PubMed] [Google Scholar]
  8. Herman R. K. Mosaic analysis. Methods Cell Biol. 1995;48:123–146. [PubMed] [Google Scholar]
  9. Kenyon C. A gene involved in the development of the posterior body region of C. elegans. Cell. 1986 Aug 1;46(3):477–487. doi: 10.1016/0092-8674(86)90668-9. [DOI] [PubMed] [Google Scholar]
  10. Kimble J., Hirsh D. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol. 1979 Jun;70(2):396–417. doi: 10.1016/0012-1606(79)90035-6. [DOI] [PubMed] [Google Scholar]
  11. Koga M., Ohshima Y. Mosaic analysis of the let-23 gene function in vulval induction of Caenorhabditis elegans. Development. 1995 Aug;121(8):2655–2666. doi: 10.1242/dev.121.8.2655. [DOI] [PubMed] [Google Scholar]
  12. Lackner M. R., Kornfeld K., Miller L. M., Horvitz H. R., Kim S. K. A MAP kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Caenorhabditis elegans. Genes Dev. 1994 Jan;8(2):160–173. doi: 10.1101/gad.8.2.160. [DOI] [PubMed] [Google Scholar]
  13. Maduro M., Pilgrim D. Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics. 1995 Nov;141(3):977–988. doi: 10.1093/genetics/141.3.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mello C. C., Kramer J. M., Stinchcomb D., Ambros V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991 Dec;10(12):3959–3970. doi: 10.1002/j.1460-2075.1991.tb04966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mello C., Fire A. DNA transformation. Methods Cell Biol. 1995;48:451–482. [PubMed] [Google Scholar]
  16. Miller L. M., Waring D. A., Kim S. K. Mosaic analysis using a ncl-1 (+) extrachromosomal array reveals that lin-31 acts in the Pn.p cells during Caenorhabditis elegans vulval development. Genetics. 1996 Jul;143(3):1181–1191. doi: 10.1093/genetics/143.3.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Podbilewicz B., White J. G. Cell fusions in the developing epithelial of C. elegans. Dev Biol. 1994 Feb;161(2):408–424. doi: 10.1006/dbio.1994.1041. [DOI] [PubMed] [Google Scholar]
  18. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  19. Seydoux G., Greenwald I. Cell autonomy of lin-12 function in a cell fate decision in C. elegans. Cell. 1989 Jun 30;57(7):1237–1245. doi: 10.1016/0092-8674(89)90060-3. [DOI] [PubMed] [Google Scholar]
  20. Sulston J. E., Horvitz H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977 Mar;56(1):110–156. doi: 10.1016/0012-1606(77)90158-0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES