Skip to main content
Genetics logoLink to Genetics
. 1998 Jul;149(3):1557–1567. doi: 10.1093/genetics/149.3.1557

Quantitative trait locus mapping in dairy cattle by means of selective milk DNA pooling using dinucleotide microsatellite markers: analysis of milk protein percentage.

E Lipkin 1, M O Mosig 1, A Darvasi 1, E Ezra 1, A Shalom 1, A Friedmann 1, M Soller 1
PMCID: PMC1460242  PMID: 9649542

Abstract

"Selective DNA pooling" accomplishes quantitative trait locus (QTL) mapping through densitometric estimates of marker allele frequencies in pooled DNA samples of phenotypically extreme individuals. With poly(TG) microsatellites, such estimates are confounded by "shadow" ("stutter") bands. A correction procedure was developed on the basis of an observed linear regression between shadow band intensity and allele TG repeat number. Using this procedure, a selective DNA pooling study with respect to milk protein percentage was implemented in Israel-Holstein dairy cattle. Pools were prepared from milk samples of high and low daughters of each of seven sires and genotyped with respect to 11 markers. Highly significant associations with milk protein percentage were found for 5 of the markers; 4 of these markers confirmed previous reports. Selective DNA pooling accessed 80.6 and 48.3%, respectively, of the information that would have been available through individual selective genotyping or total population genotyping. In effect, the statistical power of 45,600 individual genotypings was obtained from 328 pool genotypings. This methodology can make genome-wide mapping of QTL accessible to moderately sized breeding organizations.

Full Text

The Full Text of this article is available as a PDF (170.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barendse W., Armitage S. M., Kossarek L. M., Shalom A., Kirkpatrick B. W., Ryan A. M., Clayton D., Li L., Neibergs H. L., Zhang N. A genetic linkage map of the bovine genome. Nat Genet. 1994 Mar;6(3):227–235. doi: 10.1038/ng0394-227. [DOI] [PubMed] [Google Scholar]
  2. Bishop M. D., Kappes S. M., Keele J. W., Stone R. T., Sunden S. L., Hawkins G. A., Toldo S. S., Fries R., Grosz M. D., Yoo J. A genetic linkage map for cattle. Genetics. 1994 Feb;136(2):619–639. doi: 10.1093/genetics/136.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheng H. H., Levin I., Vallejo R. L., Khatib H., Dodgson J. B., Crittenden L. B., Hillel J. Development of a genetic map of the chicken with markers of high utility. Poult Sci. 1995 Nov;74(11):1855–1874. doi: 10.3382/ps.0741855. [DOI] [PubMed] [Google Scholar]
  4. Crawford A. M., Dodds K. G., Ede A. J., Pierson C. A., Montgomery G. W., Garmonsway H. G., Beattie A. E., Davies K., Maddox J. F., Kappes S. W. An autosomal genetic linkage map of the sheep genome. Genetics. 1995 Jun;140(2):703–724. doi: 10.1093/genetics/140.2.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Darvasi A., Soller M. A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet. 1997 Mar;27(2):125–132. doi: 10.1023/a:1025685324830. [DOI] [PubMed] [Google Scholar]
  6. Darvasi A., Soller M. Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics. 1994 Dec;138(4):1365–1373. doi: 10.1093/genetics/138.4.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Darvasi A. The effect of selective genotyping on QTL mapping accuracy. Mamm Genome. 1997 Jan;8(1):67–68. doi: 10.1007/s003359900353. [DOI] [PubMed] [Google Scholar]
  8. Dib C., Fauré S., Fizames C., Samson D., Drouot N., Vignal A., Millasseau P., Marc S., Hazan J., Seboun E. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996 Mar 14;380(6570):152–154. doi: 10.1038/380152a0. [DOI] [PubMed] [Google Scholar]
  9. Dietrich W. F., Miller J., Steen R., Merchant M. A., Damron-Boles D., Husain Z., Dredge R., Daly M. J., Ingalls K. A., O'Connor T. J. A comprehensive genetic map of the mouse genome. Nature. 1996 Mar 14;380(6570):149–152. doi: 10.1038/380149a0. [DOI] [PubMed] [Google Scholar]
  10. Georges M., Dietz A. B., Mishra A., Nielsen D., Sargeant L. S., Sorensen A., Steele M. R., Zhao X., Leipold H., Womack J. E. Microsatellite mapping of the gene causing weaver disease in cattle will allow the study of an associated quantitative trait locus. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1058–1062. doi: 10.1073/pnas.90.3.1058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Georges M., Nielsen D., Mackinnon M., Mishra A., Okimoto R., Pasquino A. T., Sargeant L. S., Sorensen A., Steele M. R., Zhao X. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics. 1995 Feb;139(2):907–920. doi: 10.1093/genetics/139.2.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hauge X. Y., Litt M. A study of the origin of 'shadow bands' seen when typing dinucleotide repeat polymorphisms by the PCR. Hum Mol Genet. 1993 Apr;2(4):411–415. doi: 10.1093/hmg/2.4.411. [DOI] [PubMed] [Google Scholar]
  13. Khatib H., Darvasi A., Plotski Y., Soller M. Determining relative microsatellite allele frequencies in pooled DNA samples. PCR Methods Appl. 1994 Aug;4(1):13–18. doi: 10.1101/gr.4.1.13. [DOI] [PubMed] [Google Scholar]
  14. Khatib H., Darvasi A., Plotski Y., Soller M. Determining relative microsatellite allele frequencies in pooled DNA samples. PCR Methods Appl. 1994 Aug;4(1):13–18. doi: 10.1101/gr.4.1.13. [DOI] [PubMed] [Google Scholar]
  15. Lagziel A., Lipkin E., Soller M. Association between SSCP haplotypes at the bovine growth hormone gene and milk protein percentage. Genetics. 1996 Mar;142(3):945–951. doi: 10.1093/genetics/142.3.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lander E., Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995 Nov;11(3):241–247. doi: 10.1038/ng1195-241. [DOI] [PubMed] [Google Scholar]
  17. LeDuc C., Miller P., Lichter J., Parry P. Batched analysis of genotypes. PCR Methods Appl. 1995 Jun;4(6):331–336. doi: 10.1101/gr.4.6.331. [DOI] [PubMed] [Google Scholar]
  18. Levinson G., Gutman G. A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol. 1987 May;4(3):203–221. doi: 10.1093/oxfordjournals.molbev.a040442. [DOI] [PubMed] [Google Scholar]
  19. Lipkin E., Shalom A., Khatib H., Soller M., Friedmann A. Milk as a source of deoxyribonucleic acid and as a substrate for the polymerase chain reaction. J Dairy Sci. 1993 Jul;76(7):2025–2032. doi: 10.3168/jds.S0022-0302(93)77536-0. [DOI] [PubMed] [Google Scholar]
  20. Litt M., Hauge X., Sharma V. Shadow bands seen when typing polymorphic dinucleotide repeats: some causes and cures. Biotechniques. 1993 Aug;15(2):280–284. [PubMed] [Google Scholar]
  21. Murray V., Monchawin C., England P. R. The determination of the sequences present in the shadow bands of a dinucleotide repeat PCR. Nucleic Acids Res. 1993 May 25;21(10):2395–2398. doi: 10.1093/nar/21.10.2395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ostensson K., Hageltorn M., Aström G. Differential cell counting in fraction-collected milk from dairy cows. Acta Vet Scand. 1988;29(3-4):493–500. doi: 10.1186/BF03548647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Perlin M. W., Lancia G., Ng S. K. Toward fully automated genotyping: genotyping microsatellite markers by deconvolution. Am J Hum Genet. 1995 Nov;57(5):1199–1210. [PMC free article] [PubMed] [Google Scholar]
  24. Ron M., Blanc Y., Band M., Ezra E., Weller J. I. Misidentification rate in the Israeli dairy cattle population and its implications for genetic improvement. J Dairy Sci. 1996 Apr;79(4):676–681. doi: 10.3168/jds.S0022-0302(96)76413-5. [DOI] [PubMed] [Google Scholar]
  25. Shalom A., Soller M., Friedmann A. Dinucleotide repeat polymorphism at the bovine HUJ616 locus. Anim Genet. 1993 Aug;24(4):327–327. [PubMed] [Google Scholar]
  26. Spelman R. J., Coppieters W., Karim L., van Arendonk J. A., Bovenhuis H. Quantitative trait loci analysis for five milk production traits on chromosome six in the Dutch Holstein-Friesian population. Genetics. 1996 Dec;144(4):1799–1808. doi: 10.1093/genetics/144.4.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 1989 Aug 25;17(16):6463–6471. doi: 10.1093/nar/17.16.6463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Velmala R., Vilkki J., Elo K., Mäki-Tanila A. Casein haplotypes and their association with milk production traits in the Finnish Ayrshire cattle. Anim Genet. 1995 Dec;26(6):419–425. doi: 10.1111/j.1365-2052.1995.tb02694.x. [DOI] [PubMed] [Google Scholar]
  29. Weber J. L., May P. E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet. 1989 Mar;44(3):388–396. [PMC free article] [PubMed] [Google Scholar]
  30. Weller J. I., Kashi Y., Soller M. Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle. J Dairy Sci. 1990 Sep;73(9):2525–2537. doi: 10.3168/jds.S0022-0302(90)78938-2. [DOI] [PubMed] [Google Scholar]
  31. Womack J. E., Kata S. R. Bovine genome mapping: evolutionary inference and the power of comparative genomics. Curr Opin Genet Dev. 1995 Dec;5(6):725–733. doi: 10.1016/0959-437x(95)80004-o. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES