Skip to main content
Genetics logoLink to Genetics
. 1998 Jul;149(3):1575–1585. doi: 10.1093/genetics/149.3.1575

Characterization of an unstable allele of the Arabidopsis HY4 locus.

E P Bruggemann 1, B Doan 1, K Handwerger 1, G Storz 1
PMCID: PMC1460247  PMID: 9649544

Abstract

The Arabidopsis HY4 gene encodes the nonessential blue light photoreceptor CRY1. Loss-of-function hy4 mutants have an elongated hypocotyl phenotype after germination under blue light. We previously analyzed 20 independent hy4 alleles produced by fast neutron mutagenesis. These alleles were grouped into two classes based on their genetic behavior and corresponding deletion size: (1) null hy4 alleles that were semidominant over wild type and contained small or moderate-sized deletions at HY4 and (2) null hy4 alleles that were recessive lethal and contained large HY4 deletions. Here we describe one additional fast neutron hy4 mutant, B144, that did not fall into either of these two classes. Mutant B144 was isolated as a heterozygote with an intermediate hy4 phenotype. One allele from this mutant, hy4-B144(Delta), contains a large deletion at HY4 and is recessive lethal. The other allele from this mutant, HY4-B144*, appears to be intact and functional but is unstable and spontaneously converts to a nonfunctional hy4 allele. In addition, HY4-B144* is lethal in homozygotes and suppresses local recombination. We discuss genetic and epigenetic mechanisms that may account for the unusual behavior of the HY4-B144* allele.

Full Text

The Full Text of this article is available as a PDF (292.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad M., Cashmore A. R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature. 1993 Nov 11;366(6451):162–166. doi: 10.1038/366162a0. [DOI] [PubMed] [Google Scholar]
  2. Ang L. H., Deng X. W. Regulatory hierarchy of photomorphogenic loci: allele-specific and light-dependent interaction between the HY5 and COP1 loci. Plant Cell. 1994 May;6(5):613–628. doi: 10.1105/tpc.6.5.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bruggemann E., Handwerger K., Essex C., Storz G. Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus. Plant J. 1996 Oct;10(4):755–760. doi: 10.1046/j.1365-313x.1996.10040755.x. [DOI] [PubMed] [Google Scholar]
  4. Casal J. J., Boccalandro H. Co-action between phytochrome B and HY4 in Arabidopsis thaliana. Planta. 1995;197(2):213–218. doi: 10.1007/BF00202639. [DOI] [PubMed] [Google Scholar]
  5. Chang C., Bowman J. L., DeJohn A. W., Lander E. S., Meyerowitz E. M. Restriction fragment length polymorphism linkage map for Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6856–6860. doi: 10.1073/pnas.85.18.6856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feinbaum R. L., Ausubel F. M. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol Cell Biol. 1988 May;8(5):1985–1992. doi: 10.1128/mcb.8.5.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feinbaum R. L., Ausubel F. M. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol Cell Biol. 1988 May;8(5):1985–1992. doi: 10.1128/mcb.8.5.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jackson J. A., Jenkins G. I. Extension-growth responses and expression of flavonoid biosynthesis genes in the Arabidopsis hy4 mutant. Planta. 1995;197(2):233–239. doi: 10.1007/BF00202642. [DOI] [PubMed] [Google Scholar]
  9. Klimyuk V. I., Carroll B. J., Thomas C. M., Jones J. D. Alkali treatment for rapid preparation of plant material for reliable PCR analysis. Plant J. 1993 Mar;3(3):493–494. doi: 10.1111/j.1365-313x.1993.tb00169.x. [DOI] [PubMed] [Google Scholar]
  10. Konieczny A., Ausubel F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. doi: 10.1046/j.1365-313x.1993.04020403.x. [DOI] [PubMed] [Google Scholar]
  11. Leutwiler L. S., Meyerowitz E. M., Tobin E. M. Structure and expression of three light-harvesting chlorophyll a/b-binding protein genes in Arabidopsis thaliana. Nucleic Acids Res. 1986 May 27;14(10):4051–4064. doi: 10.1093/nar/14.10.4051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lin C., Ahmad M., Cashmore A. R. Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development. Plant J. 1996 Nov;10(5):893–902. doi: 10.1046/j.1365-313x.1996.10050893.x. [DOI] [PubMed] [Google Scholar]
  13. Lin C., Ahmad M., Gordon D., Cashmore A. R. Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8423–8427. doi: 10.1073/pnas.92.18.8423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lin C., Robertson D. E., Ahmad M., Raibekas A. A., Jorns M. S., Dutton P. L., Cashmore A. R. Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science. 1995 Aug 18;269(5226):968–970. doi: 10.1126/science.7638620. [DOI] [PubMed] [Google Scholar]
  15. Malhotra K., Kim S. T., Batschauer A., Dawut L., Sancar A. Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity. Biochemistry. 1995 May 23;34(20):6892–6899. doi: 10.1021/bi00020a037. [DOI] [PubMed] [Google Scholar]
  16. Schmidt R., West J., Cnops G., Love K., Balestrazzi A., Dean C. Detailed description of four YAC contigs representing 17 Mb of chromosome 4 of Arabidopsis thaliana ecotype Columbia. Plant J. 1996 May;9(5):755–765. doi: 10.1046/j.1365-313x.1996.9050755.x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES