Skip to main content
Genetics logoLink to Genetics
. 1998 Aug;149(4):1997–2006. doi: 10.1093/genetics/149.4.1997

Genetic mechanisms underlying apimaysin and maysin synthesis and corn earworm antibiosis in maize (Zea mays L.).

E A Lee 1, P F Byrne 1, M D McMullen 1, M E Snook 1, B R Wiseman 1, N W Widstrom 1, E H Coe 1
PMCID: PMC1460254  PMID: 9691053

Abstract

C-glycosyl flavones in maize silks confer resistance (i.e., antibiosis) to corn earworm (Helicoverpa zea [Boddie]) larvae and are distinguished by their B-ring substitutions, with maysin and apimaysin being the di- and monohydroxy B-ring forms, respectively. Herein, we examine the genetic mechanisms underlying the synthesis of maysin and apimaysin and the corresponding effects on corn earworm larval growth. Using an F2 population, we found a quantitative trait locus (QTL), rem1, which accounted for 55.3% of the phenotypic variance for maysin, and a QTL, pr1, which explained 64.7% of the phenotypic variance for apimaysin. The maysin QTL did not affect apimaysin synthesis, and the apimaysin QTL did not affect maysin synthesis, suggesting that the synthesis of these closely related compounds occurs independently. The two QTLs, rem1 and pr1, were involved in a significant epistatic interaction for total flavones, suggesting that a ceiling exists governing the total possible amount of C-glycosyl flavone. The maysin and apimaysin QTLs were significant QTLs for corn earworm antibiosis, accounting for 14. 1% (rem1) and 14.7% (pr1) of the phenotypic variation. An additional QTL, represented by umc85 on the short arm of chromosome 6, affected antibiosis (R2 = 15.2%), but did not affect the synthesis of the C-glycosyl flavones.

Full Text

The Full Text of this article is available as a PDF (141.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Byrne P. F., McMullen M. D., Snook M. E., Musket T. A., Theuri J. M., Widstrom N. W., Wiseman B. R., Coe E. H. Quantitative trait loci and metabolic pathways: genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8820–8825. doi: 10.1073/pnas.93.17.8820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Campbell M. M., Sederoff R. R. Variation in Lignin Content and Composition (Mechanisms of Control and Implications for the Genetic Improvement of Plants). Plant Physiol. 1996 Jan;110(1):3–13. doi: 10.1104/pp.110.1.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chandler V. L., Radicella J. P., Robbins T. P., Chen J., Turks D. Two regulatory genes of the maize anthocyanin pathway are homologous: isolation of B utilizing R genomic sequences. Plant Cell. 1989 Dec;1(12):1175–1183. doi: 10.1105/tpc.1.12.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chopra S., Athma P., Peterson T. Alleles of the maize P gene with distinct tissue specificities encode Myb-homologous proteins with C-terminal replacements. Plant Cell. 1996 Jul;8(7):1149–1158. doi: 10.1105/tpc.8.7.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cone K. C., Cocciolone S. M., Burr F. A., Burr B. Maize anthocyanin regulatory gene pl is a duplicate of c1 that functions in the plant. Plant Cell. 1993 Dec;5(12):1795–1805. doi: 10.1105/tpc.5.12.1795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Franken P., Niesbach-Klösgen U., Weydemann U., Maréchal-Drouard L., Saedler H., Wienand U. The duplicated chalcone synthase genes C2 and Whp (white pollen) of Zea mays are independently regulated; evidence for translational control of Whp expression by the anthocyanin intensifying gene in. EMBO J. 1991 Sep;10(9):2605–2612. doi: 10.1002/j.1460-2075.1991.tb07802.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gardiner J. M., Coe E. H., Melia-Hancock S., Hoisington D. A., Chao S. Development of a core RFLP map in maize using an immortalized F2 population. Genetics. 1993 Jul;134(3):917–930. doi: 10.1093/genetics/134.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Holton T. A., Cornish E. C. Genetics and Biochemistry of Anthocyanin Biosynthesis. Plant Cell. 1995 Jul;7(7):1071–1083. doi: 10.1105/tpc.7.7.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hrazdina G., Wagner G. J. Metabolic pathways as enzyme complexes: evidence for the synthesis of phenylpropanoids and flavonoids on membrane associated enzyme complexes. Arch Biochem Biophys. 1985 Feb 15;237(1):88–100. doi: 10.1016/0003-9861(85)90257-7. [DOI] [PubMed] [Google Scholar]
  10. Larson R. L., Coe E. H., Jr Gene-dependent flavonoid glucosyltransferase in maize. Biochem Genet. 1977 Feb;15(1-2):153–156. doi: 10.1007/BF00484558. [DOI] [PubMed] [Google Scholar]
  11. Larson R., Bussard J. B., Coe E. H., Jr Gene-dependent flavonoid 3'-hydroxylation in maize. Biochem Genet. 1986 Aug;24(7-8):615–624. doi: 10.1007/BF00504338. [DOI] [PubMed] [Google Scholar]
  12. Levings C. S., Stuber C. W. A maize gene controlling silk browning in response to wounding. Genetics. 1971 Dec;69(4):491–498. doi: 10.1093/genetics/69.4.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Liu Q., Bonness M. S., Liu M., Seradge E., Dixon R. A., Mabry T. J. Enzymes of B-ring-deoxy flavonoid biosynthesis in elicited cell cultures of "old man" cactus (Cephalocereus senilis). Arch Biochem Biophys. 1995 Aug 20;321(2):397–404. doi: 10.1006/abbi.1995.1410. [DOI] [PubMed] [Google Scholar]
  14. McMullen M. D., Byrne P. F., Snook M. E., Wiseman B. R., Lee E. A., Widstrom N. W., Coe E. H. Quantitative trait loci and metabolic pathways. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):1996–2000. doi: 10.1073/pnas.95.5.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Peterson T. Intragenic transposition of Ac generates a new allele of the maize P gene. Genetics. 1990 Oct;126(2):469–476. doi: 10.1093/genetics/126.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schwarz-Sommer Z., Shepherd N., Tacke E., Gierl A., Rohde W., Leclercq L., Mattes M., Berndtgen R., Peterson P. A., Saedler H. Influence of transposable elements on the structure and function of the A1 gene of Zea mays. EMBO J. 1987 Feb;6(2):287–294. doi: 10.1002/j.1460-2075.1987.tb04752.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES