Skip to main content
Genetics logoLink to Genetics
. 1998 Aug;149(4):1707–1715. doi: 10.1093/genetics/149.4.1707

GIT1, a gene encoding a novel transporter for glycerophosphoinositol in Saccharomyces cerevisiae.

J L Patton-Vogt 1, S A Henry 1
PMCID: PMC1460278  PMID: 9691030

Abstract

Phosphatidylinositol catabolism in Saccharomyces cerevisiae cells cultured in media containing inositol results in the release of glycerophosphoinositol (GroPIns) into the medium. As the extracellular concentration of inositol decreases with growth, the released GroPIns is transported back into the cell. Exploiting the ability of the inositol auxotroph, ino1, to use exogenous GroPIns as an inositol source, we have isolated mutants (Git-) defective in the uptake and metabolism of GroPIns. One mutant was found to be affected in the gene encoding the transcription factor, SPT7. Mutants of the positive regulatory gene INO2, but not of its partner, INO4, also have the Git- phenotype. Another mutant was complemented by a single open reading frame (ORF) termed GIT1 (glycerophosphoinositol). This ORF consists of 1556 bp predicted to encode a polypeptide of 518 amino acids and 57.3 kD. The predicted Git1p has similarity to a variety of S. cerevisiae transporters, including a phosphate transporter (Pho84p), and both inositol transporters (Itr1p and Itr2p). Furthermore, Git1p contains a sugar transport motif and 12 potential membrane-spanning domains. Transport assays performed on a git1 mutant together with the above evidence indicate that the GIT1 gene encodes a permease involved in the uptake of GroPIns.

Full Text

The Full Text of this article is available as a PDF (158.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angus W. W., Lester R. L. The regulated catabolism of endogenous and exogenous phosphatidylinositol by Saccharomyces cerevisiae leading to extracellular glycerophosphorylinositol and inositol. J Biol Chem. 1975 Jan 10;250(1):22–30. [PubMed] [Google Scholar]
  2. Angus W. W., Lester R. L. Turnover of inositol and phosphorus containing lipids in Saccharomyces cerevisiae; extracellular accumulation of glycerophosphorylinositol derived from phosphatidylinositol. Arch Biochem Biophys. 1972 Aug;151(2):483–495. doi: 10.1016/0003-9861(72)90525-5. [DOI] [PubMed] [Google Scholar]
  3. Ashburner B. P., Lopes J. M. Autoregulated expression of the yeast INO2 and INO4 helix-loop-helix activator genes effects cooperative regulation on their target genes. Mol Cell Biol. 1995 Mar;15(3):1709–1715. doi: 10.1128/mcb.15.3.1709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Corda D., Falasca M. Glycerophosphoinositols as potential markers of ras-induced transformation and novel second messengers. Anticancer Res. 1996 May-Jun;16(3B):1341–1350. [PubMed] [Google Scholar]
  5. Falasca M., Carvelli A., Iurisci C., Qiu R. G., Symons M. H., Corda D. Fast receptor-induced formation of glycerophosphoinositol-4-phosphate, a putative novel intracellular messenger in the Ras pathway. Mol Biol Cell. 1997 Mar;8(3):443–453. doi: 10.1091/mbc.8.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Falasca M., Corda D. Elevated levels and mitogenic activity of lysophosphatidylinositol in k-ras-transformed epithelial cells. Eur J Biochem. 1994 Apr 1;221(1):383–389. doi: 10.1111/j.1432-1033.1994.tb18750.x. [DOI] [PubMed] [Google Scholar]
  7. Gansheroff L. J., Dollard C., Tan P., Winston F. The Saccharomyces cerevisiae SPT7 gene encodes a very acidic protein important for transcription in vivo. Genetics. 1995 Feb;139(2):523–536. doi: 10.1093/genetics/139.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hawkins P. T., Stephens L. R., Piggott J. R. Analysis of inositol metabolites produced by Saccharomyces cerevisiae in response to glucose stimulation. J Biol Chem. 1993 Feb 15;268(5):3374–3383. [PubMed] [Google Scholar]
  9. Iacovelli L., Falasca M., Valitutti S., D'Arcangelo D., Corda D. Glycerophosphoinositol 4-phosphate, a putative endogenous inhibitor of adenylylcyclase. J Biol Chem. 1993 Sep 25;268(27):20402–20407. [PubMed] [Google Scholar]
  10. Ko J., Cheah S., Fischl A. S. Regulation of phosphatidylinositol:ceramide phosphoinositol transferase in Saccharomyces cerevisiae. J Bacteriol. 1994 Aug;176(16):5181–5183. doi: 10.1128/jb.176.16.5181-5183.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  12. Larson T. J., Schumacher G., Boos W. Identification of the glpT-encoded sn-glycerol-3-phosphate permease of Escherichia coli, an oligomeric integral membrane protein. J Bacteriol. 1982 Dec;152(3):1008–1021. doi: 10.1128/jb.152.3.1008-1021.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lester R. L., Steiner M. R. The occurrence of diphosphoinositide and triphosphoinositide in Saccharomyces cerevisiae. J Biol Chem. 1968 Sep 25;243(18):4889–4893. [PubMed] [Google Scholar]
  14. Lindegren G., Hwang Y. L., Oshima Y., Lindegren C. C. Genetical mutants induced by ethyl methanesulfonate in Saccharomyces. Can J Genet Cytol. 1965 Sep;7(3):491–499. doi: 10.1139/g65-064. [DOI] [PubMed] [Google Scholar]
  15. Lorenz M. C., Muir R. S., Lim E., McElver J., Weber S. C., Heitman J. Gene disruption with PCR products in Saccharomyces cerevisiae. Gene. 1995 May 26;158(1):113–117. doi: 10.1016/0378-1119(95)00144-u. [DOI] [PubMed] [Google Scholar]
  16. Mountford J. C., Bunce C. M., French P. J., Michell R. H., Brown G. Intracellular concentrations of inositol, glycerophosphoinositol and inositol pentakisphosphate increase during haemopoietic cell differentiation. Biochim Biophys Acta. 1994 May 26;1222(1):101–108. doi: 10.1016/0167-4889(94)90030-2. [DOI] [PubMed] [Google Scholar]
  17. Nikawa J., Tsukagoshi Y., Yamashita S. Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae. J Biol Chem. 1991 Jun 15;266(17):11184–11191. [PubMed] [Google Scholar]
  18. Patton-Vogt J. L., Griac P., Sreenivas A., Bruno V., Dowd S., Swede M. J., Henry S. A. Role of the yeast phosphatidylinositol/phosphatidylcholine transfer protein (Sec14p) in phosphatidylcholine turnover and INO1 regulation. J Biol Chem. 1997 Aug 15;272(33):20873–20883. doi: 10.1074/jbc.272.33.20873. [DOI] [PubMed] [Google Scholar]
  19. Patton J. L., Pessoa-Brandao L., Henry S. A. Production and reutilization of an extracellular phosphatidylinositol catabolite, glycerophosphoinositol, by Saccharomyces cerevisiae. J Bacteriol. 1995 Jun;177(12):3379–3385. doi: 10.1128/jb.177.12.3379-3385.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ruis H., Schüller C. Stress signaling in yeast. Bioessays. 1995 Nov;17(11):959–965. doi: 10.1002/bies.950171109. [DOI] [PubMed] [Google Scholar]
  21. Schroeder R., Breitenbach M. Metabolism of myo-inositol during sporulation of myo-inositol-requiring Saccharomyces cerevisiae. J Bacteriol. 1981 May;146(2):775–783. doi: 10.1128/jb.146.2.775-783.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schweizer H., Argast M., Boos W. Characteristics of a binding protein-dependent transport system for sn-glycerol-3-phosphate in Escherichia coli that is part of the pho regulon. J Bacteriol. 1982 Jun;150(3):1154–1163. doi: 10.1128/jb.150.3.1154-1163.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shiao Y. J., Vance J. E. Evidence for an ethanolamine cycle: differential recycling of the ethanolamine moiety of phosphatidylethanolamine derived from phosphatidylserine and ethanolamine. Biochem J. 1995 Sep 1;310(Pt 2):673–679. doi: 10.1042/bj3100673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smith T. F., Waterman M. S. Identification of common molecular subsequences. J Mol Biol. 1981 Mar 25;147(1):195–197. doi: 10.1016/0022-2836(81)90087-5. [DOI] [PubMed] [Google Scholar]
  25. Sor F., Chéret G., Fabre F., Faye G., Fukuhara H. Sequence of the HMR region on chromosome III of Saccharomyces cerevisiae. Yeast. 1992 Mar;8(3):215–222. doi: 10.1002/yea.320080307. [DOI] [PubMed] [Google Scholar]
  26. Wodicka L., Dong H., Mittmann M., Ho M. H., Lockhart D. J. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol. 1997 Dec;15(13):1359–1367. doi: 10.1038/nbt1297-1359. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES