Abstract
Quantitative trait loci (QTL) affecting milk production and health of dairy cattle were mapped in a very large Holstein granddaughter design. The analysis included 1794 sons of 14 sires and 206 genetic markers distributed across all 29 autosomes and flanking an estimated 2497 autosomal cM using Kosambi's mapping function. All families were analyzed jointly with least-squares (LS) and variance components (VC) methods. A total of 6 QTL exceeding approximate experiment-wise significance thresholds, 24 QTL exceeding suggestive thresholds, and 34 QTL exceeding chromosome-wise thresholds were identified. Significance thresholds were determined via data permutation (for LS analysis) and chi-square distribution (for VC analysis). The average bootstrap confidence interval for the experiment-wise significant QTL was 48 cM. Some chromosomes harbored QTL affecting several traits, and these were always in coupling phase, defined by consistency with genetic correlations among traits. Chromosome 17 likely harbors 2 QTL affecting milk yield, and some other chromosomes showed some evidence for 2 linked QTL affecting the same trait. In each of these cases, the 2 QTL were in repulsion phase in those families appearing to be heterozygous for both QTL, a finding which supports the build-up of linkage disequilibrium due to selection.
Full Text
The Full Text of this article is available as a PDF (210.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Georges M., Nielsen D., Mackinnon M., Mishra A., Okimoto R., Pasquino A. T., Sargeant L. S., Sorensen A., Steele M. R., Zhao X. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics. 1995 Feb;139(2):907–920. doi: 10.1093/genetics/139.2.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoeschele I., Uimari P., Grignola F. E., Zhang Q., Gage K. M. Advances in statistical methods to map quantitative trait loci in outbred populations. Genetics. 1997 Nov;147(3):1445–1457. doi: 10.1093/genetics/147.3.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lander E., Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995 Nov;11(3):241–247. doi: 10.1038/ng1195-241. [DOI] [PubMed] [Google Scholar]
- Lebreton C. M., Visscher P. M. Empirical nonparametric bootstrap strategies in quantitative trait loci mapping: conditioning on the genetic model. Genetics. 1998 Jan;148(1):525–535. doi: 10.1093/genetics/148.1.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Logue D. N., Harvey M. J. Meiosis and spermatogenesis in bulls heterozygous for a presumptive 1/29 Robertsonian translocation. J Reprod Fertil. 1978 Sep;54(1):159–165. doi: 10.1530/jrf.0.0540159. [DOI] [PubMed] [Google Scholar]
- Mackinnon M. J., Georges M. A. The effects of selection on linkage analysis for quantitative traits. Genetics. 1992 Dec;132(4):1177–1185. doi: 10.1093/genetics/132.4.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meuwissen T. H., Van Arendonk J. A. Potential improvements in rate of genetic gain from marker-assisted selection in dairy cattle breeding schemes. J Dairy Sci. 1992 Jun;75(6):1651–1659. doi: 10.3168/jds.S0022-0302(92)77922-3. [DOI] [PubMed] [Google Scholar]
- Ron M., Band M., Yanai A., Weller J. I. Mapping quantitative trait loci with DNA microsatellites in a commercial dairy cattle population. Anim Genet. 1994 Aug;25(4):259–264. doi: 10.1111/j.1365-2052.1994.tb00202.x. [DOI] [PubMed] [Google Scholar]
- Spelman R. J., Coppieters W., Karim L., van Arendonk J. A., Bovenhuis H. Quantitative trait loci analysis for five milk production traits on chromosome six in the Dutch Holstein-Friesian population. Genetics. 1996 Dec;144(4):1799–1808. doi: 10.1093/genetics/144.4.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VanRaden P. M., Klaaskate E. J. Genetic evaluation of length of productive life including predicted longevity of live cows. J Dairy Sci. 1993 Sep;76(9):2758–2764. doi: 10.3168/jds.S0022-0302(93)77613-4. [DOI] [PubMed] [Google Scholar]
- VanRaden P. M., Wiggans G. R. Derivation, calculation, and use of national animal model information. J Dairy Sci. 1991 Aug;74(8):2737–2746. doi: 10.3168/jds.S0022-0302(91)78453-1. [DOI] [PubMed] [Google Scholar]
- Vilkki H. J., de Koning D. J., Elo K., Velmala R., Mäki-Tanila A. Multiple marker mapping of quantitative trait loci of Finnish dairy cattle by regression. J Dairy Sci. 1997 Jan;80(1):198–204. doi: 10.3168/jds.S0022-0302(97)75928-9. [DOI] [PubMed] [Google Scholar]
- Visscher P. M., Thompson R., Haley C. S. Confidence intervals in QTL mapping by bootstrapping. Genetics. 1996 Jun;143(2):1013–1020. doi: 10.1093/genetics/143.2.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weigel D. J., Cassell B. G., Pearson R. E. Prediction of transmitting abilities for productive life and lifetime profitability from production, somatic cell count, and type traits in milk markets for fluid milk and cheese. J Dairy Sci. 1997 Jul;80(7):1398–1405. doi: 10.3168/jds.S0022-0302(97)76069-7. [DOI] [PubMed] [Google Scholar]
- Xu S., Atchley W. R. A random model approach to interval mapping of quantitative trait loci. Genetics. 1995 Nov;141(3):1189–1197. doi: 10.1093/genetics/141.3.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeng Z. B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10972–10976. doi: 10.1073/pnas.90.23.10972. [DOI] [PMC free article] [PubMed] [Google Scholar]