Abstract
Synthetic lethals are variants at different loci that have little or no effect on viability singly but cause lethality in combination. The importance of synthetic lethals and, more generally, of synthetic deleterious loci (SDL) has been controversial. Here, we derive the expected frequencies for SDL under a mutation-selection balance for the complete haploid model and selected cases of the diploid model. We have also obtained simple approximations that demonstrate good fit to exact solutions based on numerical iterations. In the haploid case, equilibrium frequencies of carrier haplotypes (individuals with only a single mutation) are comparable to analogous single-locus results, after allowing for the effects of linkage. Frequencies in the diploid case, however, are much higher and more comparable to the square root of the single-locus results. In particular, when selection operates only on the double-mutant homozygote and linkage is not too tight, the expected frequency of the carriers is approximately the quartic root of the ratio between the mutation rate and the selection coefficient of the synthetics. For a reasonably wide set of models, the frequencies of carriers can be on the order of a few percent. The equilibrium frequencies of these deleterious alleles can be relatively high because, with SDL, both dominance and epistasis act to shield carriers from exposure to selection. We also discuss the possible role of SDL in maintaining genetic variation and in hybrid breakdown.
Full Text
The Full Text of this article is available as a PDF (212.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Batten J. L., Thoday J. M. Identifying recombinational lethals in Drosophila melanogaster. Heredity (Edinb) 1969 Aug;24(3):445–455. doi: 10.1038/hdy.1969.60. [DOI] [PubMed] [Google Scholar]
- Charlesworth B. Evolutionary mechanisms of senescence. Genetica. 1993;91(1-3):11–19. doi: 10.1007/BF01435984. [DOI] [PubMed] [Google Scholar]
- Charlesworth B., Morgan M. T., Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. doi: 10.1093/genetics/134.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charlesworth B. Mutation-selection balance and the evolutionary advantage of sex and recombination. Genet Res. 1990 Jun;55(3):199–221. doi: 10.1017/s0016672300025532. [DOI] [PubMed] [Google Scholar]
- Crow J. F. Twenty-five years ago in Genetics: identical triplets. Genetics. 1992 Mar;130(3):395–398. doi: 10.1093/genetics/130.3.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis M. B., MacIntyre R. J. A genetic analysis of the alpha-glycerophosphate oxidase locus in Drosophila melanogaster. Genetics. 1988 Nov;120(3):755–766. doi: 10.1093/genetics/120.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fromont-Racine M., Rain J. C., Legrain P. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat Genet. 1997 Jul;16(3):277–282. doi: 10.1038/ng0797-277. [DOI] [PubMed] [Google Scholar]
- Johnson C. D., Rand J. B., Herman R. K., Stern B. D., Russell R. L. The acetylcholinesterase genes of C. elegans: identification of a third gene (ace-3) and mosaic mapping of a synthetic lethal phenotype. Neuron. 1988 Apr;1(2):165–173. doi: 10.1016/0896-6273(88)90201-2. [DOI] [PubMed] [Google Scholar]
- Karlin S., McGregor J. On mutation selection balance for two-locus haploid and diploid populations. Theor Popul Biol. 1971 Mar;2(1):60–70. doi: 10.1016/0040-5809(71)90005-0. [DOI] [PubMed] [Google Scholar]
- King J. L. Continuously distributed factors affecting fitness. Genetics. 1967 Mar;55(3):483–492. doi: 10.1093/genetics/55.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kondrashov A. S. Classification of hypotheses on the advantage of amphimixis. J Hered. 1993 Sep-Oct;84(5):372–387. doi: 10.1093/oxfordjournals.jhered.a111358. [DOI] [PubMed] [Google Scholar]
- Kondrashov A. S. Contamination of the genome by very slightly deleterious mutations: why have we not died 100 times over? J Theor Biol. 1995 Aug 21;175(4):583–594. doi: 10.1006/jtbi.1995.0167. [DOI] [PubMed] [Google Scholar]
- Kondrashov A. S. Deleterious mutations and the evolution of sexual reproduction. Nature. 1988 Dec 1;336(6198):435–440. doi: 10.1038/336435a0. [DOI] [PubMed] [Google Scholar]
- Kondrashov A. S. Deleterious mutations as an evolutionary factor. 1. The advantage of recombination. Genet Res. 1984 Oct;44(2):199–217. doi: 10.1017/s0016672300026392. [DOI] [PubMed] [Google Scholar]
- Kondrashov A. S. Dynamics of unconditionally deleterious mutations: Gaussian approximation and soft selection. Genet Res. 1995 Apr;65(2):113–121. doi: 10.1017/s0016672300033139. [DOI] [PubMed] [Google Scholar]
- Kondrashov A. S., Turelli M. Deleterious mutations, apparent stabilizing selection and the maintenance of quantitative variation. Genetics. 1992 Oct;132(2):603–618. doi: 10.1093/genetics/132.2.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milkman R. D. Heterosis as a major cause of heterozygosity in nature. Genetics. 1967 Mar;55(3):493–495. doi: 10.1093/genetics/55.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milkman R. Selection differentials and selection coefficients. Genetics. 1978 Feb;88(2):391–403. doi: 10.1093/genetics/88.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nowak M. A., Boerlijst M. C., Cooke J., Smith J. M. Evolution of genetic redundancy. Nature. 1997 Jul 10;388(6638):167–171. doi: 10.1038/40618. [DOI] [PubMed] [Google Scholar]
- Ohta T. Evolution by gene duplication and compensatory advantageous mutations. Genetics. 1988 Nov;120(3):841–847. doi: 10.1093/genetics/120.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta T. Further examples of evolution by gene duplication revealed through DNA sequence comparisons. Genetics. 1994 Dec;138(4):1331–1337. doi: 10.1093/genetics/138.4.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Partridge L., Barton N. H. Optimality, mutation and the evolution of ageing. Nature. 1993 Mar 25;362(6418):305–311. doi: 10.1038/362305a0. [DOI] [PubMed] [Google Scholar]
- Phillips P. C. The language of gene interaction. Genetics. 1998 Jul;149(3):1167–1171. doi: 10.1093/genetics/149.3.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spassky B, Spassky N, Levene H, Dobzhansky T. Release of Genetic Variability through Recombination. I. Drosophila Pseudoobscura. Genetics. 1958 Sep;43(5):844–867. doi: 10.1093/genetics/43.5.844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sved J. A., Reed T. E., Bodmer W. F. The number of balanced polymorphisms that can be maintained in a natural population. Genetics. 1967 Mar;55(3):469–481. doi: 10.1093/genetics/55.3.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Temin R. G., Meyer H. U., Dawson P. S., Crow J. F. The influence of epistasis on homozygous viability depression in Drosophila melanogaster. Genetics. 1969 Feb;61(2):497–519. doi: 10.1093/genetics/61.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]