Skip to main content
Genetics logoLink to Genetics
. 1998 Sep;150(1):239–250. doi: 10.1093/genetics/150.1.239

Intra- and interspecies variation among Bari-1 elements of the melanogaster species group.

R Moschetti 1, C Caggese 1, P Barsanti 1, R Caizzi 1
PMCID: PMC1460315  PMID: 9725843

Abstract

We have investigated the distribution of sequences homologous to Bari-1, a Tc1-like transposable element first identified in Drosophila melanogaster, in 87 species of the Drosophila genus. We have also isolated and sequenced Bari-1 homologues from D. simulans, D. mauritiana, and D. sechellia, the species constituting with D. melanogaster the melanogaster complex, and from D. diplacantha and D. erecta, two phylogenetically more distant species of the melanogaster group. Within the melanogaster complex the Bari-1 elements are extremely similar to each other, showing nucleotide identity values of at least 99.3%. In contrast, Bari-1-like elements from D. diplacantha and D. erecta are on average only 70% similar to D. melanogaster Bari-1 and are usually defective due to nucleotide deletions and/or insertions in the ORFs encoding their transposases. In D. erecta the defective copies are all located in the chromocenter and on chromosome 4. Surprisingly, while D. melanogaster Bari-1 elements possess 26-bp inverted terminal repeats, their D. diplacantha and D. erecta homologues possess long inverted terminal repeats similar to the terminal structures observed in the S elements of D. melanogaster and in several other Tc1-like elements of different organisms. This finding, together with the nucleotide and amino acid identity level between D. diplacantha and D. erecta elements and Bari-1 of D. melanogaster, suggests a common evolutionary origin and a rapid diversification of the termini of these Drosophila Tc1-like elements.

Full Text

The Full Text of this article is available as a PDF (353.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abad P., Quiles C., Tares S., Piotte C., Castagnone-Sereno P., Abadon M., Dalmasso A. Sequences homologous to Tc(s) transposable elements of Caenorhabditis elegans are widely distributed in the phylum nematoda. J Mol Evol. 1991 Sep;33(3):251–258. doi: 10.1007/BF02100676. [DOI] [PubMed] [Google Scholar]
  2. Brezinsky L., Wang G. V., Humphreys T., Hunt J. The transposable element Uhu from Hawaiian Drosophila--member of the widely dispersed class of Tc1-like transposons. Nucleic Acids Res. 1990 Apr 25;18(8):2053–2059. doi: 10.1093/nar/18.8.2053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brierley H. L., Potter S. S. Distinct characteristics of loop sequences of two Drosophila foldback transposable elements. Nucleic Acids Res. 1985 Jan 25;13(2):485–500. doi: 10.1093/nar/13.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caggese C., Pimpinelli S., Barsanti P., Caizzi R. The distribution of the transposable element Bari-1 in the Drosophila melanogaster and Drosophila simulans genomes. Genetica. 1995;96(3):269–283. doi: 10.1007/BF01439581. [DOI] [PubMed] [Google Scholar]
  5. Caizzi R., Caggese C., Pimpinelli S. Bari-1, a new transposon-like family in Drosophila melanogaster with a unique heterochromatic organization. Genetics. 1993 Feb;133(2):335–345. doi: 10.1093/genetics/133.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Capy P., Anxolabéhère D., Langin T. The strange phylogenies of transposable elements: are horizontal transfers the only explantation? Trends Genet. 1994 Jan;10(1):7–12. doi: 10.1016/0168-9525(94)90012-4. [DOI] [PubMed] [Google Scholar]
  7. Capy P., Koga A., David J. R., Hartl D. L. Sequence analysis of active mariner elements in natural populations of Drosophila simulans. Genetics. 1992 Mar;130(3):499–506. doi: 10.1093/genetics/130.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Charlesworth B., Sniegowski P., Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994 Sep 15;371(6494):215–220. doi: 10.1038/371215a0. [DOI] [PubMed] [Google Scholar]
  9. Colloms S. D., van Luenen H. G., Plasterk R. H. DNA binding activities of the Caenorhabditis elegans Tc3 transposase. Nucleic Acids Res. 1994 Dec 25;22(25):5548–5554. doi: 10.1093/nar/22.25.5548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  11. Finnegan D. J. Eukaryotic transposable elements and genome evolution. Trends Genet. 1989 Apr;5(4):103–107. doi: 10.1016/0168-9525(89)90039-5. [DOI] [PubMed] [Google Scholar]
  12. Franz G., Savakis C. Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. Nucleic Acids Res. 1991 Dec 11;19(23):6646–6646. doi: 10.1093/nar/19.23.6646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hartl D. L., Lozovskaya E. R., Nurminsky D. I., Lohe A. R. What restricts the activity of mariner-like transposable elements. Trends Genet. 1997 May;13(5):197–201. doi: 10.1016/s0168-9525(97)01087-1. [DOI] [PubMed] [Google Scholar]
  14. Henikoff S., Plasterk R. H. Related transposons in C.elegans and D.melanogaster. Nucleic Acids Res. 1988 Jul 11;16(13):6234–6234. doi: 10.1093/nar/16.13.6234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ivics Z., Hackett P. B., Plasterk R. H., Izsvák Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell. 1997 Nov 14;91(4):501–510. doi: 10.1016/s0092-8674(00)80436-5. [DOI] [PubMed] [Google Scholar]
  16. Ivics Z., Izsvak Z., Minter A., Hackett P. B. Identification of functional domains and evolution of Tc1-like transposable elements. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5008–5013. doi: 10.1073/pnas.93.10.5008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Izsvák Z., Ivics Z., Hackett P. B. Characterization of a Tc1-like transposable element in zebrafish (Danio rerio). Mol Gen Genet. 1995 May 10;247(3):312–322. doi: 10.1007/BF00293199. [DOI] [PubMed] [Google Scholar]
  18. Kidwell M. G. Evolutionary biology. Voyage of an ancient mariner. Nature. 1993 Mar 18;362(6417):202–202. doi: 10.1038/362202a0. [DOI] [PubMed] [Google Scholar]
  19. Kidwell M. G. Horizontal transfer. Curr Opin Genet Dev. 1992 Dec;2(6):868–873. doi: 10.1016/s0959-437x(05)80109-1. [DOI] [PubMed] [Google Scholar]
  20. Kidwell M. G. Lateral transfer in natural populations of eukaryotes. Annu Rev Genet. 1993;27:235–256. doi: 10.1146/annurev.ge.27.120193.001315. [DOI] [PubMed] [Google Scholar]
  21. Lampe D. J., Churchill M. E., Robertson H. M. A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J. 1996 Oct 1;15(19):5470–5479. [PMC free article] [PubMed] [Google Scholar]
  22. Lohe A. R., Moriyama E. N., Lidholm D. A., Hartl D. L. Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol Biol Evol. 1995 Jan;12(1):62–72. doi: 10.1093/oxfordjournals.molbev.a040191. [DOI] [PubMed] [Google Scholar]
  23. Maruyama K., Hartl D. L. Evolution of the transposable element mariner in Drosophila species. Genetics. 1991 Jun;128(2):319–329. doi: 10.1093/genetics/128.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McDonald J. F. Evolution and consequences of transposable elements. Curr Opin Genet Dev. 1993 Dec;3(6):855–864. doi: 10.1016/0959-437x(93)90005-a. [DOI] [PubMed] [Google Scholar]
  25. Merriman P. J., Grimes C. D., Ambroziak J., Hackett D. A., Skinner P., Simmons M. J. S elements: a family of Tc1-like transposons in the genome of Drosophila melanogaster. Genetics. 1995 Dec;141(4):1425–1438. doi: 10.1093/genetics/141.4.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Miklos G. L., Yamamoto M. T., Davies J., Pirrotta V. Microcloning reveals a high frequency of repetitive sequences characteristic of chromosome 4 and the beta-heterochromatin of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2051–2055. doi: 10.1073/pnas.85.7.2051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Radice A. D., Bugaj B., Fitch D. H., Emmons S. W. Widespread occurrence of the Tc1 transposon family: Tc1-like transposons from teleost fish. Mol Gen Genet. 1994 Sep 28;244(6):606–612. doi: 10.1007/BF00282750. [DOI] [PubMed] [Google Scholar]
  28. Robertson H. M., Lampe D. J. Distribution of transposable elements in arthropods. Annu Rev Entomol. 1995;40:333–357. doi: 10.1146/annurev.en.40.010195.002001. [DOI] [PubMed] [Google Scholar]
  29. Robertson H. M., MacLeod E. G. Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect Mol Biol. 1993;2(3):125–139. doi: 10.1111/j.1365-2583.1993.tb00132.x. [DOI] [PubMed] [Google Scholar]
  30. Robertson H. M. The mariner transposable element is widespread in insects. Nature. 1993 Mar 18;362(6417):241–245. doi: 10.1038/362241a0. [DOI] [PubMed] [Google Scholar]
  31. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vos J. C., De Baere I., Plasterk R. H. Transposase is the only nematode protein required for in vitro transposition of Tc1. Genes Dev. 1996 Mar 15;10(6):755–761. doi: 10.1101/gad.10.6.755. [DOI] [PubMed] [Google Scholar]
  33. Vos J. C., van Luenen H. G., Plasterk R. H. Characterization of the Caenorhabditis elegans Tc1 transposase in vivo and in vitro. Genes Dev. 1993 Jul;7(7A):1244–1253. doi: 10.1101/gad.7.7a.1244. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES