Skip to main content
Genetics logoLink to Genetics
. 1998 Sep;150(1):435–447. doi: 10.1093/genetics/150.1.435

Bottleneck effect on genetic variance. A theoretical investigation of the role of dominance.

J Wang 1, A Caballero 1, P D Keightley 1, W G Hill 1
PMCID: PMC1460318  PMID: 9725859

Abstract

The phenomenon that the genetic variance of fitness components increase following a bottleneck or inbreeding is supported by a growing number of experiments and is explained theoretically by either dominance or epistasis. In this article, diffusion approximations under the infinite sites model are used to quantify the effect of dominance, using data on viability in Drosophila melanogaster. The model is based on mutation parameters from mutation accumulation experiments involving balancer chromosomes (set I) or inbred lines (set II). In essence, set I assumes many mutations of small effect, whereas set II assumes fewer mutations of large effect. Compared to empirical estimates from large outbred populations, set I predicts reasonable genetic variances but too low mean viability. In contrast, set II predicts a reasonable mean viability but a low genetic variance. Both sets of parameters predict the changes in mean viability (depression), additive variance, between-line variance and heritability following bottlenecks generally compatible with empirical results, and these changes are mainly caused by lethals and deleterious mutants of large effect. This article suggests that dominance is the main cause for increased genetic variances for fitness components and fitness-related traits after bottlenecks observed in various experiments.

Full Text

The Full Text of this article is available as a PDF (182.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avery P. J., Hill W. G. Variance in quantitative traits due to linked dominant genes and variance in heterozygosity in small populations. Genetics. 1979 Apr;91(4):817–844. doi: 10.1093/genetics/91.4.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barrett S. C., Charlesworth D. Effects of a change in the level of inbreeding on the genetic load. Nature. 1991 Aug 8;352(6335):522–524. doi: 10.1038/352522a0. [DOI] [PubMed] [Google Scholar]
  3. Barton N. H., Turelli M. Evolutionary quantitative genetics: how little do we know? Annu Rev Genet. 1989;23:337–370. doi: 10.1146/annurev.ge.23.120189.002005. [DOI] [PubMed] [Google Scholar]
  4. Bryant E. H., McCommas S. A., Combs L. M. The Effect of an Experimental Bottleneck upon Quantitative Genetic Variation in the Housefly. Genetics. 1986 Dec;114(4):1191–1211. doi: 10.1093/genetics/114.4.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caballero A., Keightley P. D. A pleiotropic nonadditive model of variation in quantitative traits. Genetics. 1994 Nov;138(3):883–900. doi: 10.1093/genetics/138.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fernández J., López-Fanjul C. Spontaneous mutational variances and covariances for fitness-related traits in Drosophila melanogaster. Genetics. 1996 Jun;143(2):829–837. doi: 10.1093/genetics/143.2.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Johnston M. O., Schoen D. J. Mutation rates and dominance levels of genes affecting total fitness in two angiosperm species. Science. 1995 Jan 13;267(5195):226–229. doi: 10.1126/science.267.5195.226. [DOI] [PubMed] [Google Scholar]
  8. Kacser H., Burns J. A. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. doi: 10.1093/genetics/97.3-4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Keightley P. D., Caballero A. Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3823–3827. doi: 10.1073/pnas.94.8.3823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Keightley P. D. Nature of deleterious mutation load in Drosophila. Genetics. 1996 Dec;144(4):1993–1999. doi: 10.1093/genetics/144.4.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Keightley P. D., Ohnishi O. EMS-induced polygenic mutation rates for nine quantitative characters in Drosophila melanogaster. Genetics. 1998 Feb;148(2):753–766. doi: 10.1093/genetics/148.2.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Keightley P. D. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics. 1994 Dec;138(4):1315–1322. doi: 10.1093/genetics/138.4.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kibota T. T., Lynch M. Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature. 1996 Jun 20;381(6584):694–696. doi: 10.1038/381694a0. [DOI] [PubMed] [Google Scholar]
  14. Kimura M. The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics. 1969 Apr;61(4):893–903. doi: 10.1093/genetics/61.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lynch M. Design and analysis of experiments on random drift and inbreeding depression. Genetics. 1988 Nov;120(3):791–807. doi: 10.1093/genetics/120.3.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mackay T. F., Lyman R. F., Jackson M. S. Effects of P element insertions on quantitative traits in Drosophila melanogaster. Genetics. 1992 Feb;130(2):315–332. doi: 10.1093/genetics/130.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Meffert L. M. Bottleneck effects on genetic variance for courtship repertoire. Genetics. 1995 Jan;139(1):365–374. doi: 10.1093/genetics/139.1.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mukai T., Chigusa S. I., Mettler L. E., Crow J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics. 1972 Oct;72(2):335–355. doi: 10.1093/genetics/72.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mukai T., Nagano S. The Genetic Structure of Natural Populations of DROSOPHILA MELANOGASTER. Xvi. Excess of Additive Genetic Variance of Viability. Genetics. 1983 Sep;105(1):115–134. doi: 10.1093/genetics/105.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mukai T. The genetic structure of natural populations of Drosophila melanogaster. 8. Natural selection on the degree of dominance of viability polygenes. Genetics. 1969 Oct;63(2):467–478. doi: 10.1093/genetics/63.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ohnishi O. Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster. II. Homozygous effect of polygenic mutations. Genetics. 1977 Nov;87(3):529–545. doi: 10.1093/genetics/87.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Paterson A. H., DeVerna J. W., Lanini B., Tanksley S. D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics. 1990 Mar;124(3):735–742. doi: 10.1093/genetics/124.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Robertson A. The Effect of Inbreeding on the Variation Due to Recessive Genes. Genetics. 1952 Mar;37(2):189–207. doi: 10.1093/genetics/37.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Simmons M. J., Crow J. F. Mutations affecting fitness in Drosophila populations. Annu Rev Genet. 1977;11:49–78. doi: 10.1146/annurev.ge.11.120177.000405. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES