Skip to main content
Genetics logoLink to Genetics
. 1998 Sep;150(1):283–299. doi: 10.1093/genetics/150.1.283

Overexpression Beadex mutations and loss-of-function heldup-a mutations in Drosophila affect the 3' regulatory and coding components, respectively, of the Dlmo gene.

M Shoresh 1, S Orgad 1, O Shmueli 1, R Werczberger 1, D Gelbaum 1, S Abiri 1, D Segal 1
PMCID: PMC1460330  PMID: 9725847

Abstract

LIM domains function as bridging modules between different members of multiprotein complexes. We report the cloning of a LIM-containing gene from Drosophila, termed Dlmo, which is highly homologous to the vertebrate LIM-only (LMO) genes. The 3' untranslated (UTR) of Dlmo contains multiple motifs implicated in negative post-transcriptional regulation, including AT-rich elements and Brd-like boxes. Dlmo resides in polytene band 17C1-2, where Beadex (Bx) and heldup-a (hdp-a) mutations map. We demonstrate that Bx mutations disrupt the 3'UTR of Dlmo, and thereby abrogate the putative negative control elements. This results in overexpression of Dlmo, which causes the wing scalloping that is typical of Bx mutants. We show that the erect wing phenotype of hdp-a results from disruption of the coding region of Dlmo. This provides molecular grounds for the suppression of the Bx phenotype by hdp-a mutations. Finally, we demonstrate phenotypic interaction between the LMO gene Dlmo, the LIM homeodomain gene apterous, and the Chip gene, which encodes a homolog of the vertebrate LIM-interacting protein NLI/Ldb1. We propose that in analogy to their vertebrate counterparts, these proteins form a DNA-binding complex that regulates wing development.

Full Text

The Full Text of this article is available as a PDF (531.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abler M. L., Green P. J. Control of mRNA stability in higher plants. Plant Mol Biol. 1996 Oct;32(1-2):63–78. doi: 10.1007/BF00039377. [DOI] [PubMed] [Google Scholar]
  2. Agulnick A. D., Taira M., Breen J. J., Tanaka T., Dawid I. B., Westphal H. Interactions of the LIM-domain-binding factor Ldb1 with LIM homeodomain proteins. Nature. 1996 Nov 21;384(6606):270–272. doi: 10.1038/384270a0. [DOI] [PubMed] [Google Scholar]
  3. Altaratz M., Applebaum S. W., Richard D. S., Gilbert L. I., Segal D. Regulation of juvenile hormone synthesis in wild-type and apterous mutant Drosophila. Mol Cell Endocrinol. 1991 Oct;81(1-3):205–216. doi: 10.1016/0303-7207(91)90219-i. [DOI] [PubMed] [Google Scholar]
  4. Arber S., Caroni P. Specificity of single LIM motifs in targeting and LIM/LIM interactions in situ. Genes Dev. 1996 Feb 1;10(3):289–300. doi: 10.1101/gad.10.3.289. [DOI] [PubMed] [Google Scholar]
  5. Baltz R., Evrard J. L., Domon C., Steinmetz A. A LIM motif is present in a pollen-specific protein. Plant Cell. 1992 Dec;4(12):1465–1466. doi: 10.1105/tpc.4.12.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blair S. S., Brower D. L., Thomas J. B., Zavortink M. The role of apterous in the control of dorsoventral compartmentalization and PS integrin gene expression in the developing wing of Drosophila. Development. 1994 Jul;120(7):1805–1815. doi: 10.1242/dev.120.7.1805. [DOI] [PubMed] [Google Scholar]
  7. Boehm T., Baer R., Lavenir I., Forster A., Waters J. J., Nacheva E., Rabbitts T. H. The mechanism of chromosomal translocation t(11;14) involving the T-cell receptor C delta locus on human chromosome 14q11 and a transcribed region of chromosome 11p15. EMBO J. 1988 Feb;7(2):385–394. doi: 10.1002/j.1460-2075.1988.tb02825.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boehm T., Foroni L., Kaneko Y., Perutz M. F., Rabbitts T. H. The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4367–4371. doi: 10.1073/pnas.88.10.4367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Boehm T., Spillantini M. G., Sofroniew M. V., Surani M. A., Rabbitts T. H. Developmentally regulated and tissue specific expression of mRNAs encoding the two alternative forms of the LIM domain oncogene rhombotin: evidence for thymus expression. Oncogene. 1991 May;6(5):695–703. [PubMed] [Google Scholar]
  10. Bourgouin C., Lundgren S. E., Thomas J. B. Apterous is a Drosophila LIM domain gene required for the development of a subset of embryonic muscles. Neuron. 1992 Sep;9(3):549–561. doi: 10.1016/0896-6273(92)90192-g. [DOI] [PubMed] [Google Scholar]
  11. Breen J. J., Agulnick A. D., Westphal H., Dawid I. B. Interactions between LIM domains and the LIM domain-binding protein Ldb1. J Biol Chem. 1998 Feb 20;273(8):4712–4717. doi: 10.1074/jbc.273.8.4712. [DOI] [PubMed] [Google Scholar]
  12. Brown M. C., Perrotta J. A., Turner C. E. Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding. J Cell Biol. 1996 Nov;135(4):1109–1123. doi: 10.1083/jcb.135.4.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chen C. Y., Shyu A. B. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci. 1995 Nov;20(11):465–470. doi: 10.1016/s0968-0004(00)89102-1. [DOI] [PubMed] [Google Scholar]
  14. Cohen B., McGuffin M. E., Pfeifle C., Segal D., Cohen S. M. apterous, a gene required for imaginal disc development in Drosophila encodes a member of the LIM family of developmental regulatory proteins. Genes Dev. 1992 May;6(5):715–729. doi: 10.1101/gad.6.5.715. [DOI] [PubMed] [Google Scholar]
  15. Curtiss J., Heilig J. S. Arrowhead encodes a LIM homeodomain protein that distinguishes subsets of Drosophila imaginal cells. Dev Biol. 1997 Oct 1;190(1):129–141. doi: 10.1006/dbio.1997.8659. [DOI] [PubMed] [Google Scholar]
  16. Curtiss J., Heilig J. S. DeLIMiting development. Bioessays. 1998 Jan;20(1):58–69. doi: 10.1002/(SICI)1521-1878(199801)20:1<58::AID-BIES9>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  17. Dawid I. B., Breen J. J., Toyama R. LIM domains: multiple roles as adapters and functional modifiers in protein interactions. Trends Genet. 1998 Apr;14(4):156–162. doi: 10.1016/s0168-9525(98)01424-3. [DOI] [PubMed] [Google Scholar]
  18. Diaz-Benjumea F. J., Cohen S. M. Interaction between dorsal and ventral cells in the imaginal disc directs wing development in Drosophila. Cell. 1993 Nov 19;75(4):741–752. doi: 10.1016/0092-8674(93)90494-b. [DOI] [PubMed] [Google Scholar]
  19. Dorsett D. Potentiation of a polyadenylylation site by a downstream protein-DNA interaction. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4373–4377. doi: 10.1073/pnas.87.11.4373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Engels W. R., Preston C. R. Formation of chromosome rearrangements by P factors in Drosophila. Genetics. 1984 Aug;107(4):657–678. doi: 10.1093/genetics/107.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Feuerstein R., Wang X., Song D., Cooke N. E., Liebhaber S. A. The LIM/double zinc-finger motif functions as a protein dimerization domain. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10655–10659. doi: 10.1073/pnas.91.22.10655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Foroni L., Boehm T., White L., Forster A., Sherrington P., Liao X. B., Brannan C. I., Jenkins N. A., Copeland N. G., Rabbitts T. H. The rhombotin gene family encode related LIM-domain proteins whose differing expression suggests multiple roles in mouse development. J Mol Biol. 1992 Aug 5;226(3):747–761. doi: 10.1016/0022-2836(92)90630-3. [DOI] [PubMed] [Google Scholar]
  23. Freyd G., Kim S. K., Horvitz H. R. Novel cysteine-rich motif and homeodomain in the product of the Caenorhabditis elegans cell lineage gene lin-11. Nature. 1990 Apr 26;344(6269):876–879. doi: 10.1038/344876a0. [DOI] [PubMed] [Google Scholar]
  24. Jurata L. W., Gill G. N. Structure and function of LIM domains. Curr Top Microbiol Immunol. 1998;228:75–113. doi: 10.1007/978-3-642-80481-6_4. [DOI] [PubMed] [Google Scholar]
  25. Jurata L. W., Pfaff S. L., Gill G. N. The nuclear LIM domain interactor NLI mediates homo- and heterodimerization of LIM domain transcription factors. J Biol Chem. 1998 Feb 6;273(6):3152–3157. doi: 10.1074/jbc.273.6.3152. [DOI] [PubMed] [Google Scholar]
  26. Karlsson O., Thor S., Norberg T., Ohlsson H., Edlund T. Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a homeo- and a Cys-His domain. Nature. 1990 Apr 26;344(6269):879–882. doi: 10.1038/344879a0. [DOI] [PubMed] [Google Scholar]
  27. Lai E. C., Posakony J. W. The Bearded box, a novel 3' UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression. Development. 1997 Dec;124(23):4847–4856. doi: 10.1242/dev.124.23.4847. [DOI] [PubMed] [Google Scholar]
  28. Larson R. C., Fisch P., Larson T. A., Lavenir I., Langford T., King G., Rabbitts T. H. T cell tumours of disparate phenotype in mice transgenic for Rbtn-2. Oncogene. 1994 Dec;9(12):3675–3681. [PubMed] [Google Scholar]
  29. Leviten M. W., Lai E. C., Posakony J. W. The Drosophila gene Bearded encodes a novel small protein and shares 3' UTR sequence motifs with multiple Enhancer of split complex genes. Development. 1997 Oct;124(20):4039–4051. doi: 10.1242/dev.124.20.4039. [DOI] [PubMed] [Google Scholar]
  30. Lifschytz E., Green M. M. Genetic identification of dominant overproducing mutations: the Beadex gene. Mol Gen Genet. 1979 Mar 20;171(2):153–159. doi: 10.1007/BF00270001. [DOI] [PubMed] [Google Scholar]
  31. Lundgren S. E., Callahan C. A., Thor S., Thomas J. B. Control of neuronal pathway selection by the Drosophila LIM homeodomain gene apterous. Development. 1995 Jun;121(6):1769–1773. doi: 10.1242/dev.121.6.1769. [DOI] [PubMed] [Google Scholar]
  32. Mariol M. C., Preat T., Limbourg-Bouchon B. Molecular cloning of fused, a gene required for normal segmentation in the Drosophila melanogaster embryo. Mol Cell Biol. 1987 Sep;7(9):3244–3251. doi: 10.1128/mcb.7.9.3244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mattox W. W., Davidson N. Isolation and characterization of the Beadex locus of Drosophila melanogaster: a putative cis-acting negative regulatory element for the heldup-a gene. Mol Cell Biol. 1984 Jul;4(7):1343–1353. doi: 10.1128/mcb.4.7.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. McGuire E. A., Hockett R. D., Pollock K. M., Bartholdi M. F., O'Brien S. J., Korsmeyer S. J. The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein. Mol Cell Biol. 1989 May;9(5):2124–2132. doi: 10.1128/mcb.9.5.2124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Morcillo P., Rosen C., Baylies M. K., Dorsett D. Chip, a widely expressed chromosomal protein required for segmentation and activity of a remote wing margin enhancer in Drosophila. Genes Dev. 1997 Oct 15;11(20):2729–2740. doi: 10.1101/gad.11.20.2729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Osada H., Grutz G., Axelson H., Forster A., Rabbitts T. H. Association of erythroid transcription factors: complexes involving the LIM protein RBTN2 and the zinc-finger protein GATA1. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9585–9589. doi: 10.1073/pnas.92.21.9585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pfaff S. L., Mendelsohn M., Stewart C. L., Edlund T., Jessell T. M. Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell. 1996 Jan 26;84(2):309–320. doi: 10.1016/s0092-8674(00)80985-x. [DOI] [PubMed] [Google Scholar]
  38. Porter F. D., Drago J., Xu Y., Cheema S. S., Wassif C., Huang S. P., Lee E., Grinberg A., Massalas J. S., Bodine D. Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development. 1997 Aug;124(15):2935–2944. doi: 10.1242/dev.124.15.2935. [DOI] [PubMed] [Google Scholar]
  39. Ringo J., Werczberger R., Altaratz M., Segal D. Female sexual receptivity is defective in juvenile hormone-deficient mutants of the apterous gene of Drosophila melanogaster. Behav Genet. 1991 Sep;21(5):453–469. doi: 10.1007/BF01066724. [DOI] [PubMed] [Google Scholar]
  40. Ross J. mRNA stability in mammalian cells. Microbiol Rev. 1995 Sep;59(3):423–450. doi: 10.1128/mr.59.3.423-450.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Royer-Pokora B., Loos U., Ludwig W. D. TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). Oncogene. 1991 Oct;6(10):1887–1893. [PubMed] [Google Scholar]
  42. Sadler I., Crawford A. W., Michelsen J. W., Beckerle M. C. Zyxin and cCRP: two interactive LIM domain proteins associated with the cytoskeleton. J Cell Biol. 1992 Dec;119(6):1573–1587. doi: 10.1083/jcb.119.6.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schmeichel K. L., Beckerle M. C. The LIM domain is a modular protein-binding interface. Cell. 1994 Oct 21;79(2):211–219. doi: 10.1016/0092-8674(94)90191-0. [DOI] [PubMed] [Google Scholar]
  44. Simmons M. J., Raymond J. D., Johnson N. A., Fahey T. M. A comparison of mutation rates for specific loci and chromosome regions in dysgenic hybrid males of Drosophila melanogaster. Genetics. 1984 Jan;106(1):85–94. doi: 10.1093/genetics/106.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Stronach B. E., Siegrist S. E., Beckerle M. C. Two muscle-specific LIM proteins in Drosophila. J Cell Biol. 1996 Sep;134(5):1179–1195. doi: 10.1083/jcb.134.5.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sánchez-García I., Rabbitts T. H. The LIM domain: a new structural motif found in zinc-finger-like proteins. Trends Genet. 1994 Sep;10(9):315–320. doi: 10.1016/0168-9525(94)90034-5. [DOI] [PubMed] [Google Scholar]
  47. Taira M., Evrard J. L., Steinmetz A., Dawid I. B. Classification of LIM proteins. Trends Genet. 1995 Nov;11(11):431–432. doi: 10.1016/s0168-9525(00)89139-8. [DOI] [PubMed] [Google Scholar]
  48. Taira M., Otani H., Saint-Jeannet J. P., Dawid I. B. Role of the LIM class homeodomain protein Xlim-1 in neural and muscle induction by the Spemann organizer in Xenopus. Nature. 1994 Dec 15;372(6507):677–679. doi: 10.1038/372677a0. [DOI] [PubMed] [Google Scholar]
  49. Thomas U., Jönsson F., Speicher S. A., Knust E. Phenotypic and molecular characterization of SerD, a dominant allele of the Drosophila gene Serrate. Genetics. 1995 Jan;139(1):203–213. doi: 10.1093/genetics/139.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Visvader J. E., Mao X., Fujiwara Y., Hahm K., Orkin S. H. The LIM-domain binding protein Ldb1 and its partner LMO2 act as negative regulators of erythroid differentiation. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13707–13712. doi: 10.1073/pnas.94.25.13707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wadman I. A., Osada H., Grütz G. G., Agulnick A. D., Westphal H., Forster A., Rabbitts T. H. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 1997 Jun 2;16(11):3145–3157. doi: 10.1093/emboj/16.11.3145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Way J. C., Chalfie M. mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell. 1988 Jul 1;54(1):5–16. doi: 10.1016/0092-8674(88)90174-2. [DOI] [PubMed] [Google Scholar]
  53. Zhu T. H., Bodem J., Keppel E., Paro R., Royer-Pokora B. A single ancestral gene of the human LIM domain oncogene family LMO in Drosophila: characterization of the Drosophila Dlmo gene. Oncogene. 1995 Oct 5;11(7):1283–1290. [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES