Skip to main content
Genetics logoLink to Genetics
. 1998 Oct;150(2):823–833. doi: 10.1093/genetics/150.2.823

Molecular evolution of an imprinted gene: repeatability of patterns of evolution within the mammalian insulin-like growth factor type II receptor.

N G Smith 1, L D Hurst 1
PMCID: PMC1460351  PMID: 9755212

Abstract

The repeatability of patterns of variation in Ka/Ks and Ks is expected if such patterns are the result of deterministic forces. We have contrasted the molecular evolution of the mammalian insulin-like growth factor type II receptor (Igf2r) in the mouse-rat comparison with that in the human-cow comparison. In so doing, we investigate explanations for both the evolution of genomic imprinting and for Ks variation (and hence putatively for mutation rate evolution). Previous analysis of Igf2r, in the mouse-rat comparison, found Ka/Ks patterns that were suggested to be contrary to those expected under the conflict theory of imprinting. We find that Ka/Ks variation is repeatable and hence confirm these patterns. However, we also find that the molecular evolution of Igf2r signal sequences suggests that positive selection, and hence conflict, may be affecting this region. The variation in Ks across Igf2r is also repeatable. To the best of our knowledge this is the first demonstration of such repeatability. We consider three explanations for the variation in Ks across the gene: (1) that it is the result of mutational biases, (2) that it is the result of selection on the mutation rate, and (3) that it is the product of selection on codon usage. Explanations 2 and 3 predict a Ka-Ks correlation, which is not found. Explanation 3 also predicts a negative correlation between codon bias and Ks, which is also not found. However, in support of explanation 1 we do find that in rodents the rate of silent C --> T mutations at CpG sites does covary with Ks, suggesting that methylation-induced mutational patterns can explain some of the variation in Ks. We find evidence to suggest that this CpG effect is due to both variation in CpG density, and to variation in the frequency with which CpGs mutate. Interestingly, however, a GC4 analysis shows no covariance with Ks, suggesting that to eliminate methyl-associated effects CpG rates themselves must be analyzed. These results suggest that, in contrast to previous studies of intragenic variation, Ks patterns are not simply caused by the same forces responsible for Ka/Ks correlations.

Full Text

The Full Text of this article is available as a PDF (163.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Alvarez-Valin F., Jabbari K., Bernardi G. Synonymous and nonsynonymous substitutions in mammalian genes: intragenic correlations. J Mol Evol. 1998 Jan;46(1):37–44. doi: 10.1007/pl00006281. [DOI] [PubMed] [Google Scholar]
  3. Benner S. A., Cohen M. A., Gonnet G. H. Amino acid substitution during functionally constrained divergent evolution of protein sequences. Protein Eng. 1994 Nov;7(11):1323–1332. doi: 10.1093/protein/7.11.1323. [DOI] [PubMed] [Google Scholar]
  4. Casane D., Boissinot S., Chang B. H., Shimmin L. C., Li W. Mutation pattern variation among regions of the primate genome. J Mol Evol. 1997 Sep;45(3):216–226. doi: 10.1007/pl00006223. [DOI] [PubMed] [Google Scholar]
  5. Comeron J. M. A method for estimating the numbers of synonymous and nonsynonymous substitutions per site. J Mol Evol. 1995 Dec;41(6):1152–1159. doi: 10.1007/BF00173196. [DOI] [PubMed] [Google Scholar]
  6. De Souza A. T., Yamada T., Mills J. J., Jirtle R. L. Imprinted genes in liver carcinogenesis. FASEB J. 1997 Jan;11(1):60–67. doi: 10.1096/fasebj.11.1.9034167. [DOI] [PubMed] [Google Scholar]
  7. Dennis P. A., Rifkin D. B. Cellular activation of latent transforming growth factor beta requires binding to the cation-independent mannose 6-phosphate/insulin-like growth factor type II receptor. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):580–584. doi: 10.1073/pnas.88.2.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Drake J. W. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7160–7164. doi: 10.1073/pnas.88.16.7160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Duret L., Mouchiroud D., Gouy M. HOVERGEN: a database of homologous vertebrate genes. Nucleic Acids Res. 1994 Jun 25;22(12):2360–2365. doi: 10.1093/nar/22.12.2360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Efstratiadis A. Parental imprinting of autosomal mammalian genes. Curr Opin Genet Dev. 1994 Apr;4(2):265–280. doi: 10.1016/s0959-437x(05)80054-1. [DOI] [PubMed] [Google Scholar]
  11. Haig D. Parental antagonism, relatedness asymmetries, and genomic imprinting. Proc Biol Sci. 1997 Nov 22;264(1388):1657–1662. doi: 10.1098/rspb.1997.0230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hughes A. L., Hughes M. K., Howell C. Y., Nei M. Natural selection at the class II major histocompatibility complex loci of mammals. Philos Trans R Soc Lond B Biol Sci. 1994 Nov 29;346(1317):359–367. doi: 10.1098/rstb.1994.0153. [DOI] [PubMed] [Google Scholar]
  13. Hurst L. D., McVean G. T. Growth effects of uniparental disomies and the conflict theory of genomic imprinting. Trends Genet. 1997 Nov;13(11):436–443. doi: 10.1016/s0168-9525(97)01273-0. [DOI] [PubMed] [Google Scholar]
  14. Hurst L. D., McVean G., Moore T. Imprinted genes have few and small introns. Nat Genet. 1996 Mar;12(3):234–237. doi: 10.1038/ng0396-234. [DOI] [PubMed] [Google Scholar]
  15. Izard J. W., Rusch S. L., Kendall D. A. The amino-terminal charge and core region hydrophobicity interdependently contribute to the function of signal sequences. J Biol Chem. 1996 Aug 30;271(35):21579–21582. doi: 10.1074/jbc.271.35.21579. [DOI] [PubMed] [Google Scholar]
  16. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
  17. McVean G. T., Hurst L. D. Evidence for a selectively favourable reduction in the mutation rate of the X chromosome. Nature. 1997 Mar 27;386(6623):388–392. doi: 10.1038/386388a0. [DOI] [PubMed] [Google Scholar]
  18. McVean G. T., Hurst L. D. Molecular evolution of imprinted genes: no evidence for antagonistic coevolution. Proc Biol Sci. 1997 May 22;264(1382):739–746. doi: 10.1098/rspb.1997.0105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mills J. J., Falls J. G., De Souza A. T., Jirtle R. L. Imprinted M6p/Igf2 receptor is mutated in rat liver tumors. Oncogene. 1998 May 28;16(21):2797–2802. doi: 10.1038/sj.onc.1201801. [DOI] [PubMed] [Google Scholar]
  20. Mochizuki A., Takeda Y., Iwasa Y. The evolution of genomic imprinting. Genetics. 1996 Nov;144(3):1283–1295. doi: 10.1093/genetics/144.3.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morgan D. O., Edman J. C., Standring D. N., Fried V. A., Smith M. C., Roth R. A., Rutter W. J. Insulin-like growth factor II receptor as a multifunctional binding protein. Nature. 1987 Sep 24;329(6137):301–307. doi: 10.1038/329301a0. [DOI] [PubMed] [Google Scholar]
  22. Moriyama E. N., Powell J. R. Synonymous substitution rates in Drosophila: mitochondrial versus nuclear genes. J Mol Evol. 1997 Oct;45(4):378–391. doi: 10.1007/pl00006243. [DOI] [PubMed] [Google Scholar]
  23. Morton B. R., Oberholzer V. M., Clegg M. T. The influence of specific neighboring bases on substitution bias in noncoding regions of the plant chloroplast genome. J Mol Evol. 1997 Sep;45(3):227–231. doi: 10.1007/pl00006224. [DOI] [PubMed] [Google Scholar]
  24. Mouchiroud D., Gautier C., Bernardi G. Frequencies of synonymous substitutions in mammals are gene-specific and correlated with frequencies of nonsynonymous substitutions. J Mol Evol. 1995 Jan;40(1):107–113. doi: 10.1007/BF00166602. [DOI] [PubMed] [Google Scholar]
  25. Neumann B., Kubicka P., Barlow D. P. Characteristics of imprinted genes. Nat Genet. 1995 Jan;9(1):12–13. doi: 10.1038/ng0195-12. [DOI] [PubMed] [Google Scholar]
  26. Ogawa O., McNoe L. A., Eccles M. R., Morison I. M., Reeve A. E. Human insulin-like growth factor type I and type II receptors are not imprinted. Hum Mol Genet. 1993 Dec;2(12):2163–2165. doi: 10.1093/hmg/2.12.2163. [DOI] [PubMed] [Google Scholar]
  27. Pàldi A., Gyapay G., Jami J. Imprinted chromosomal regions of the human genome display sex-specific meiotic recombination frequencies. Curr Biol. 1995 Sep 1;5(9):1030–1035. doi: 10.1016/s0960-9822(95)00207-7. [DOI] [PubMed] [Google Scholar]
  28. Spencer H. G., Feldman M. W., Clark A. G. Genetic conflicts, multiple paternity and the evolution of genomic imprinting. Genetics. 1998 Feb;148(2):893–904. doi: 10.1093/genetics/148.2.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Staden R. The Staden sequence analysis package. Mol Biotechnol. 1996 Jun;5(3):233–241. doi: 10.1007/BF02900361. [DOI] [PubMed] [Google Scholar]
  30. Stöger R., Kubicka P., Liu C. G., Kafri T., Razin A., Cedar H., Barlow D. P. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell. 1993 Apr 9;73(1):61–71. doi: 10.1016/0092-8674(93)90160-r. [DOI] [PubMed] [Google Scholar]
  31. Tsaur S. C., Wu C. I. Positive selection and the molecular evolution of a gene of male reproduction, Acp26Aa of Drosophila. Mol Biol Evol. 1997 May;14(5):544–549. doi: 10.1093/oxfordjournals.molbev.a025791. [DOI] [PubMed] [Google Scholar]
  32. Tucker P. K., Lundrigan B. L. The nature of gene evolution on the mammalian Y chromosome: lessons from Sry. Philos Trans R Soc Lond B Biol Sci. 1995 Nov 29;350(1333):221–227. doi: 10.1098/rstb.1995.0155. [DOI] [PubMed] [Google Scholar]
  33. Wallis M. Remarkably high rate of molecular evolution of ruminant placental lactogens. J Mol Evol. 1993 Jul;37(1):86–88. doi: 10.1007/BF00170466. [DOI] [PubMed] [Google Scholar]
  34. Wallis M. Variable evolutionary rates in the molecular evolution of mammalian growth hormones. J Mol Evol. 1994 Jun;38(6):619–627. doi: 10.1007/BF00175882. [DOI] [PubMed] [Google Scholar]
  35. Wolfe K. H., Sharp P. M., Li W. H. Mutation rates differ among regions of the mammalian genome. Nature. 1989 Jan 19;337(6204):283–285. doi: 10.1038/337283a0. [DOI] [PubMed] [Google Scholar]
  36. Wolfe K. H., Sharp P. M. Mammalian gene evolution: nucleotide sequence divergence between mouse and rat. J Mol Evol. 1993 Oct;37(4):441–456. doi: 10.1007/BF00178874. [DOI] [PubMed] [Google Scholar]
  37. Wright F. The 'effective number of codons' used in a gene. Gene. 1990 Mar 1;87(1):23–29. doi: 10.1016/0378-1119(90)90491-9. [DOI] [PubMed] [Google Scholar]
  38. Xie S., Green J., Bixby J. B., Szafranska B., DeMartini J. C., Hecht S., Roberts R. M. The diversity and evolutionary relationships of the pregnancy-associated glycoproteins, an aspartic proteinase subfamily consisting of many trophoblast-expressed genes. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12809–12816. doi: 10.1073/pnas.94.24.12809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Xu Y., Goodyer C. G., Deal C., Polychronakos C. Functional polymorphism in the parental imprinting of the human IGF2R gene. Biochem Biophys Res Commun. 1993 Dec 15;197(2):747–754. doi: 10.1006/bbrc.1993.2542. [DOI] [PubMed] [Google Scholar]
  40. Zhou M., Ma Z., Sly W. S. Cloning and expression of the cDNA of chicken cation-independent mannose-6-phosphate receptor. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9762–9766. doi: 10.1073/pnas.92.21.9762. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES