Skip to main content
Genetics logoLink to Genetics
. 1998 Oct;150(2):601–611. doi: 10.1093/genetics/150.2.601

Mutations in the membrane anchor of yeast cytochrome c1 compensate for the absence of Oxa1p and generate carbonate-extractable forms of cytochrome c1.

P Hamel 1, C Lemaire 1, N Bonnefoy 1, P Brivet-Chevillotte 1, G Dujardin 1
PMCID: PMC1460358  PMID: 9755193

Abstract

Oxa1p is a mitochondrial inner membrane protein that is mainly required for the insertion/assembly of complex IV and ATP synthase and is functionally conserved in yeasts, humans, and plants. We have isolated several independent suppressors that compensate for the absence of Oxa1p. Molecular cloning and sequencing reveal that the suppressor mutations (CYT1-1 to -6) correspond to amino acid substitutions that are all located in the membrane anchor of cytochrome c1 and decrease the hydrophobicity of this anchor. Cytochrome c1 is a catalytic subunit of complex III, but the CYT1-1 mutation does not seem to affect the electron transfer activity. The double-mutant cyt1-1,164, which has a drastically reduced electron transfer activity, still retains the suppressor activity. Altogether, these results suggest that the suppressor function of cytochrome c1 is independent of its electron transfer activity. In addition to the membrane-bound cytochrome c1, carbonate-extractable forms accumulate in all the suppressor strains. We propose that these carbonate-extractable forms of cytochrome c1 are responsible for the suppressor function by preventing the degradation of the respiratory complex subunits that occur in the absence of Oxa1p.

Full Text

The Full Text of this article is available as a PDF (356.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altamura N., Capitanio N., Bonnefoy N., Papa S., Dujardin G. The Saccharomyces cerevisiae OXA1 gene is required for the correct assembly of cytochrome c oxidase and oligomycin-sensitive ATP synthase. FEBS Lett. 1996 Mar 11;382(1-2):111–115. doi: 10.1016/0014-5793(96)00165-2. [DOI] [PubMed] [Google Scholar]
  2. Arlt H., Tauer R., Feldmann H., Neupert W., Langer T. The YTA10-12 complex, an AAA protease with chaperone-like activity in the inner membrane of mitochondria. Cell. 1996 Jun 14;85(6):875–885. doi: 10.1016/s0092-8674(00)81271-4. [DOI] [PubMed] [Google Scholar]
  3. Bauer M., Behrens M., Esser K., Michaelis G., Pratje E. PET1402, a nuclear gene required for proteolytic processing of cytochrome oxidase subunit 2 in yeast. Mol Gen Genet. 1994 Nov 1;245(3):272–278. doi: 10.1007/BF00290106. [DOI] [PubMed] [Google Scholar]
  4. Bonnefoy N., Chalvet F., Hamel P., Slonimski P. P., Dujardin G. OXA1, a Saccharomyces cerevisiae nuclear gene whose sequence is conserved from prokaryotes to eukaryotes controls cytochrome oxidase biogenesis. J Mol Biol. 1994 Jun 3;239(2):201–212. doi: 10.1006/jmbi.1994.1363. [DOI] [PubMed] [Google Scholar]
  5. Bonnefoy N., Kermorgant M., Groudinsky O., Minet M., Slonimski P. P., Dujardin G. Cloning of a human gene involved in cytochrome oxidase assembly by functional complementation of an oxa1- mutation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11978–11982. doi: 10.1073/pnas.91.25.11978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brasseur G., Coppée J. Y., Colson A. M., Brivet-Chevillotte P. Structure-function relationships of the mitochondrial bc1 complex in temperature-sensitive mutants of the cytochrome b gene, impaired in the catalytic center N. J Biol Chem. 1995 Dec 8;270(49):29356–29364. doi: 10.1074/jbc.270.49.29356. [DOI] [PubMed] [Google Scholar]
  7. Bruel C., Brasseur R., Trumpower B. L. Subunit 8 of the Saccharomyces cerevisiae cytochrome bc1 complex interacts with succinate-ubiquinone reductase complex. J Bioenerg Biomembr. 1996 Feb;28(1):59–68. [PubMed] [Google Scholar]
  8. Dujardin G., Pajot P., Groudinsky O., Slonimski P. P. Long range control circuits within mitochondria and between nucleus and mitochondria. I. Methodology and phenomenology of suppressors. Mol Gen Genet. 1980;179(3):469–482. doi: 10.1007/BF00271736. [DOI] [PubMed] [Google Scholar]
  9. Hase T., Harabayashi M., Kawai K., Matsubara H. A carboxyl-terminal hydrophobic region of yeast cytochrome c1 is necessary for functional assembly into complex III of the respiratory chain. J Biochem. 1987 Aug;102(2):411–419. doi: 10.1093/oxfordjournals.jbchem.a122068. [DOI] [PubMed] [Google Scholar]
  10. Hase T., Harabayashi M., Kawai K., Matsubara H. Expression of modified cytochrome c1 genes and restoration of the respiratory function in a yeast mutant lacking the nuclear cytochrome c1 gene. J Biochem. 1987 Aug;102(2):401–410. doi: 10.1093/oxfordjournals.jbchem.a122067. [DOI] [PubMed] [Google Scholar]
  11. He S., Fox T. D. Membrane translocation of mitochondrially coded Cox2p: distinct requirements for export of N and C termini and dependence on the conserved protein Oxa1p. Mol Biol Cell. 1997 Aug;8(8):1449–1460. doi: 10.1091/mbc.8.8.1449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hell K., Herrmann J., Pratje E., Neupert W., Stuart R. A. Oxa1p mediates the export of the N- and C-termini of pCoxII from the mitochondrial matrix to the intermembrane space. FEBS Lett. 1997 Dec 1;418(3):367–370. doi: 10.1016/s0014-5793(97)01412-9. [DOI] [PubMed] [Google Scholar]
  13. Herrmann J. M., Neupert W., Stuart R. A. Insertion into the mitochondrial inner membrane of a polytopic protein, the nuclear-encoded Oxa1p. EMBO J. 1997 May 1;16(9):2217–2226. doi: 10.1093/emboj/16.9.2217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kermorgant M., Bonnefoy N., Dujardin G. Oxa1p, which is required for cytochrome c oxidase and ATP synthase complex formation, is embedded in the mitochondrial inner membrane. Curr Genet. 1997 Apr;31(4):302–307. doi: 10.1007/s002940050209. [DOI] [PubMed] [Google Scholar]
  15. Konishi K., Van Doren S. R., Kramer D. M., Crofts A. R., Gennis R. B. Preparation and characterization of the water-soluble heme-binding domain of cytochrome c1 from the Rhodobacter sphaeroides bc1 complex. J Biol Chem. 1991 Aug 5;266(22):14270–14276. [PubMed] [Google Scholar]
  16. Li Y., Leonard K., Weiss H. Membrane-bound and water-soluble cytochrome c1 from Neurospora mitochondria. Eur J Biochem. 1981 May;116(1):199–205. doi: 10.1111/j.1432-1033.1981.tb05319.x. [DOI] [PubMed] [Google Scholar]
  17. Meyer W., Bauer M., Pratje E. A mutation in cytochrome oxidase subunit 2 restores respiration of the mutant pet ts1402. Curr Genet. 1997 May;31(5):401–407. doi: 10.1007/s002940050222. [DOI] [PubMed] [Google Scholar]
  18. Nakai M., Ishiwatari H., Asada A., Bogaki M., Kawai K., Tanaka Y., Matsubara H. Replacement of putative axial ligands of heme iron in yeast cytochrome c1 by site-directed mutagenesis. J Biochem. 1990 Nov;108(5):798–803. doi: 10.1093/oxfordjournals.jbchem.a123283. [DOI] [PubMed] [Google Scholar]
  19. PULLMAN M. E., PENEFSKY H. S., DATTA A., RACKER E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase. J Biol Chem. 1960 Nov;235:3322–3329. [PubMed] [Google Scholar]
  20. Pearce D. A., Sherman F. Degradation of cytochrome oxidase subunits in mutants of yeast lacking cytochrome c and suppression of the degradation by mutation of yme1. J Biol Chem. 1995 Sep 8;270(36):20879–20882. doi: 10.1074/jbc.270.36.20879. [DOI] [PubMed] [Google Scholar]
  21. Pearce D. A., Sherman F. Diminished degradation of yeast cytochrome c by interactions with its physiological partners. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3735–3739. doi: 10.1073/pnas.92.9.3735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Qiu Z. H., Yu L., Yu C. A. Spin-label electron paramagnetic resonance and differential scanning calorimetry studies of the interaction between mitochondrial cytochrome c oxidase and adenosine triphosphate synthase complex. Biochemistry. 1992 Mar 31;31(12):3297–3302. doi: 10.1021/bi00127a036. [DOI] [PubMed] [Google Scholar]
  23. Rep M., Grivell L. A. The role of protein degradation in mitochondrial function and biogenesis. Curr Genet. 1996 Nov;30(5):367–380. doi: 10.1007/s002940050145. [DOI] [PubMed] [Google Scholar]
  24. Rep M., Nooy J., Guélin E., Grivell L. A. Three genes for mitochondrial proteins suppress null-mutations in both Afg3 and Rca1 when over-expressed. Curr Genet. 1996 Aug;30(3):206–211. doi: 10.1007/s002940050122. [DOI] [PubMed] [Google Scholar]
  25. Sadler I., Suda K., Schatz G., Kaudewitz F., Haid A. Sequencing of the nuclear gene for the yeast cytochrome c1 precursor reveals an unusually complex amino-terminal presequence. EMBO J. 1984 Sep;3(9):2137–2143. doi: 10.1002/j.1460-2075.1984.tb02103.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Thorsness P. E., White K. H., Fox T. D. Inactivation of YME1, a member of the ftsH-SEC18-PAS1-CDC48 family of putative ATPase-encoding genes, causes increased escape of DNA from mitochondria in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Sep;13(9):5418–5426. doi: 10.1128/mcb.13.9.5418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tzagoloff A., Yue J., Jang J., Paul M. F. A new member of a family of ATPases is essential for assembly of mitochondrial respiratory chain and ATP synthetase complexes in Saccharomyces cerevisiae. J Biol Chem. 1994 Oct 21;269(42):26144–26151. [PubMed] [Google Scholar]
  28. Vargas C., McEwan A. G., Downie J. A. Detection of c-type cytochromes using enhanced chemiluminescence. Anal Biochem. 1993 Mar;209(2):323–326. doi: 10.1006/abio.1993.1127. [DOI] [PubMed] [Google Scholar]
  29. Weilguny D., Praetorius M., Carr A., Egel R., Nielsen O. New vectors in fission yeast: application for cloning the his2 gene. Gene. 1991 Mar 1;99(1):47–54. doi: 10.1016/0378-1119(91)90032-7. [DOI] [PubMed] [Google Scholar]
  30. Xia D., Yu C. A., Kim H., Xia J. Z., Kachurin A. M., Zhang L., Yu L., Deisenhofer J. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science. 1997 Jul 4;277(5322):60–66. doi: 10.1126/science.277.5322.60. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES