Skip to main content
Genetics logoLink to Genetics
. 1998 Oct;150(2):711–721. doi: 10.1093/genetics/150.2.711

LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster.

M S Kim 1, A Repp 1, D P Smith 1
PMCID: PMC1460366  PMID: 9755202

Abstract

The molecular mechanisms mediating chemosensory discrimination in insects are unknown. Using the enhancer trapping approach, we identified a new Drosophila mutant, lush, with odorant-specific defects in olfactory behavior. lush mutant flies are abnormally attracted to high concentrations of ethanol, propanol, and butanol but have normal chemosensory responses to other odorants. We show that wild-type flies have an active olfactory avoidance mechanism to prevent attraction to concentrated alcohol, and this response is defective in lush mutants. This suggests that the defective olfactory behavior associated with the lush mutation may result from a specific defect in chemoavoidance. lush mutants have a 3-kb deletion that produces a null allele of a new member of the invertebrate odorant-binding protein family, LUSH. LUSH is normally expressed exclusively in a subset of trichoid chemosensory sensilla located on the ventral-lateral surface of the third antennal segment. LUSH is secreted from nonneuronal support cells into the sensillum lymph that bathes the olfactory neurons within these sensilla. Reintroduction of a cloned wild-type copy of lush into the mutant background completely restores wild-type olfactory behavior, demonstrating that this odorant-binding protein is required in a subset of sensilla for normal chemosensory behavior to a subset of odorants. These findings provide direct evidence that odorant-binding proteins are required for normal chemosensory behavior in Drosophila and may partially determine the chemical specificity of olfactory neurons in vivo.

Full Text

The Full Text of this article is available as a PDF (506.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcorta E. Characterization of the electroantennogram in Drosophila melanogaster and its use for identifying olfactory capture and transduction mutants. J Neurophysiol. 1991 Mar;65(3):702–714. doi: 10.1152/jn.1991.65.3.702. [DOI] [PubMed] [Google Scholar]
  2. Alcorta E., Rubio J. Genetical analysis of intrapopulational variation in olfactory response in Drosophila melanogaster. Heredity (Edinb) 1988 Feb;60(Pt 1):7–14. doi: 10.1038/hdy.1988.2. [DOI] [PubMed] [Google Scholar]
  3. Alcorta E., Rubio J. Intrapopulational variation of olfactory responses in Drosophila melanogaster. Behav Genet. 1989 Mar;19(2):285–299. doi: 10.1007/BF01065911. [DOI] [PubMed] [Google Scholar]
  4. Ayer R. K., Jr, Carlson J. Olfactory physiology in the Drosophila antenna and maxillary palp: acj6 distinguishes two classes of odorant pathways. J Neurobiol. 1992 Oct;23(8):965–982. doi: 10.1002/neu.480230804. [DOI] [PubMed] [Google Scholar]
  5. Bargmann C. I., Hartwieg E., Horvitz H. R. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell. 1993 Aug 13;74(3):515–527. doi: 10.1016/0092-8674(93)80053-h. [DOI] [PubMed] [Google Scholar]
  6. Bargmann C. I., Horvitz H. R. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron. 1991 Nov;7(5):729–742. doi: 10.1016/0896-6273(91)90276-6. [DOI] [PubMed] [Google Scholar]
  7. Bargmann C. I., Thomas J. H., Horvitz H. R. Chemosensory cell function in the behavior and development of Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol. 1990;55:529–538. doi: 10.1101/sqb.1990.055.01.051. [DOI] [PubMed] [Google Scholar]
  8. Bellen H. J., O'Kane C. J., Wilson C., Grossniklaus U., Pearson R. K., Gehring W. J. P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev. 1989 Sep;3(9):1288–1300. doi: 10.1101/gad.3.9.1288. [DOI] [PubMed] [Google Scholar]
  9. Buck L., Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991 Apr 5;65(1):175–187. doi: 10.1016/0092-8674(91)90418-x. [DOI] [PubMed] [Google Scholar]
  10. Callahan C. A., Thomas J. B. Tau-beta-galactosidase, an axon-targeted fusion protein. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5972–5976. doi: 10.1073/pnas.91.13.5972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chakir M., Peridy O., Capy P., Pla E., David J. R. Adaptation to alcoholic fermentation in Drosophila: a parallel selection imposed by environmental ethanol and acetic acid. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3621–3625. doi: 10.1073/pnas.90.8.3621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cinelli A. R., Hamilton K. A., Kauer J. S. Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. III. Spatial and temporal properties of responses evoked by odorant stimulation. J Neurophysiol. 1995 May;73(5):2053–2071. doi: 10.1152/jn.1995.73.5.2053. [DOI] [PubMed] [Google Scholar]
  13. Davis R. L., Cherry J., Dauwalder B., Han P. L., Skoulakis E. The cyclic AMP system and Drosophila learning. Mol Cell Biochem. 1995 Aug-Sep;149-150:271–278. doi: 10.1007/978-1-4615-2015-3_31. [DOI] [PubMed] [Google Scholar]
  14. Du G., Prestwich G. D. Protein structure encodes the ligand binding specificity in pheromone binding proteins. Biochemistry. 1995 Jul 11;34(27):8726–8732. doi: 10.1021/bi00027a023. [DOI] [PubMed] [Google Scholar]
  15. Dubin A. E., Heald N. L., Cleveland B., Carlson J. R., Harris G. L. Scutoid mutation of Drosophila melanogaster specifically decreases olfactory responses to short-chain acetate esters and ketones. J Neurobiol. 1995 Oct;28(2):214–233. doi: 10.1002/neu.480280208. [DOI] [PubMed] [Google Scholar]
  16. Flower D. R. The lipocalin protein family: structure and function. Biochem J. 1996 Aug 15;318(Pt 1):1–14. doi: 10.1042/bj3180001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Györgyi T. K., Roby-Shemkovitz A. J., Lerner M. R. Characterization and cDNA cloning of the pheromone-binding protein from the tobacco hornworm, Manduca sexta: a tissue-specific developmentally regulated protein. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9851–9855. doi: 10.1073/pnas.85.24.9851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hall J. C. The mating of a fly. Science. 1994 Jun 17;264(5166):1702–1714. doi: 10.1126/science.8209251. [DOI] [PubMed] [Google Scholar]
  19. Hartenstein V., Posakony J. W. Development of adult sensilla on the wing and notum of Drosophila melanogaster. Development. 1989 Oct;107(2):389–405. doi: 10.1242/dev.107.2.389. [DOI] [PubMed] [Google Scholar]
  20. Hekmat-Scafe D. S., Steinbrecht R. A., Carlson J. R. Coexpression of two odorant-binding protein homologs in Drosophila: implications for olfactory coding. J Neurosci. 1997 Mar 1;17(5):1616–1624. doi: 10.1523/JNEUROSCI.17-05-01616.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Karess R. E., Rubin G. M. Analysis of P transposable element functions in Drosophila. Cell. 1984 Aug;38(1):135–146. doi: 10.1016/0092-8674(84)90534-8. [DOI] [PubMed] [Google Scholar]
  22. Langer-Safer P. R., Levine M., Ward D. C. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4381–4385. doi: 10.1073/pnas.79.14.4381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Monte P., Woodard C., Ayer R., Lilly M., Sun H., Carlson J. Characterization of the larval olfactory response in Drosophila and its genetic basis. Behav Genet. 1989 Mar;19(2):267–283. doi: 10.1007/BF01065910. [DOI] [PubMed] [Google Scholar]
  24. Pelosi P., Baldaccini N. E., Pisanelli A. M. Identification of a specific olfactory receptor for 2-isobutyl-3-methoxypyrazine. Biochem J. 1982 Jan 1;201(1):245–248. doi: 10.1042/bj2010245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pelosi P. Odorant-binding proteins. Crit Rev Biochem Mol Biol. 1994;29(3):199–228. doi: 10.3109/10409239409086801. [DOI] [PubMed] [Google Scholar]
  26. Pevsner J., Hou V., Snowman A. M., Snyder S. H. Odorant-binding protein. Characterization of ligand binding. J Biol Chem. 1990 Apr 15;265(11):6118–6125. [PubMed] [Google Scholar]
  27. Pfeiffer C. A., Johnston R. E. Hormonal and behavioral responses of male hamsters to females and female odors: roles of olfaction, the vomeronasal system, and sexual experience. Physiol Behav. 1994 Jan;55(1):129–138. doi: 10.1016/0031-9384(94)90020-5. [DOI] [PubMed] [Google Scholar]
  28. Pikielny C. W., Hasan G., Rouyer F., Rosbash M. Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron. 1994 Jan;12(1):35–49. doi: 10.1016/0896-6273(94)90150-3. [DOI] [PubMed] [Google Scholar]
  29. Raming K., Krieger J., Breer H. Molecular cloning of an insect pheromone-binding protein. FEBS Lett. 1989 Oct 9;256(1-2):215–218. doi: 10.1016/0014-5793(89)81751-x. [DOI] [PubMed] [Google Scholar]
  30. Raming K., Krieger J., Breer H. Primary structure of a pheromone-binding protein from Antheraea pernyi: homologies with other ligand-carrying proteins. J Comp Physiol B. 1990;160(5):503–509. doi: 10.1007/BF00258977. [DOI] [PubMed] [Google Scholar]
  31. Riesgo-Escovar J. R., Piekos W. B., Carlson J. R. The Drosophila antenna: ultrastructural and physiological studies in wild-type and lozenge mutants. J Comp Physiol A. 1997 Feb;180(2):151–160. doi: 10.1007/s003590050036. [DOI] [PubMed] [Google Scholar]
  32. Riesgo-Escovar J., Woodard C., Gaines P., Carlson J. Development and organization of the Drosophila olfactory system: an analysis using enhancer traps. J Neurobiol. 1992 Oct;23(8):947–964. doi: 10.1002/neu.480230803. [DOI] [PubMed] [Google Scholar]
  33. Robertson H. M., Preston C. R., Phillis R. W., Johnson-Schlitz D. M., Benz W. K., Engels W. R. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics. 1988 Mar;118(3):461–470. doi: 10.1093/genetics/118.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rodrigues V., Buchner E. [3H]2-deoxyglucose mapping of odor-induced neuronal activity in the antennal lobes of Drosophila melanogaster. Brain Res. 1984 Dec 24;324(2):374–378. doi: 10.1016/0006-8993(84)90053-2. [DOI] [PubMed] [Google Scholar]
  35. Rodrigues V. Spatial coding of olfactory information in the antennal lobe of Drosophila melanogaster. Brain Res. 1988 Jun 21;453(1-2):299–307. doi: 10.1016/0006-8993(88)90170-9. [DOI] [PubMed] [Google Scholar]
  36. Roelofs W. L. Chemistry of sex attraction. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):44–49. doi: 10.1073/pnas.92.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  38. Sass G. L., Mohler J. D., Walsh R. C., Kalfayan L. J., Searles L. L. Structure and expression of hybrid dysgenesis-induced alleles of the ovarian tumor (otu) gene in Drosophila melanogaster. Genetics. 1993 Feb;133(2):253–263. doi: 10.1093/genetics/133.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sengupta P., Chou J. H., Bargmann C. I. odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell. 1996 Mar 22;84(6):899–909. doi: 10.1016/s0092-8674(00)81068-5. [DOI] [PubMed] [Google Scholar]
  40. Smith D. P. Olfactory mechanisms in Drosophila melanogaster. Curr Opin Neurobiol. 1996 Aug;6(4):500–505. doi: 10.1016/s0959-4388(96)80056-0. [DOI] [PubMed] [Google Scholar]
  41. Smith D. P., Ranganathan R., Hardy R. W., Marx J., Tsuchida T., Zuker C. S. Photoreceptor deactivation and retinal degeneration mediated by a photoreceptor-specific protein kinase C. Science. 1991 Dec 6;254(5037):1478–1484. doi: 10.1126/science.1962207. [DOI] [PubMed] [Google Scholar]
  42. Stamnes M. A., Shieh B. H., Chuman L., Harris G. L., Zuker C. S. The cyclophilin homolog ninaA is a tissue-specific integral membrane protein required for the proper synthesis of a subset of Drosophila rhodopsins. Cell. 1991 Apr 19;65(2):219–227. doi: 10.1016/0092-8674(91)90156-s. [DOI] [PubMed] [Google Scholar]
  43. Steinbrecht R. A. Are odorant-binding proteins involved in odorant discrimination? Chem Senses. 1996 Dec;21(6):719–727. doi: 10.1093/chemse/21.6.719. [DOI] [PubMed] [Google Scholar]
  44. Stocker R. F., Singh R. N., Schorderet M., Siddiqi O. Projection patterns of different types of antennal sensilla in the antennal glomeruli of Drosophila melanogaster. Cell Tissue Res. 1983;232(2):237–248. doi: 10.1007/BF00213783. [DOI] [PubMed] [Google Scholar]
  45. Stocker R. F. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res. 1994 Jan;275(1):3–26. doi: 10.1007/BF00305372. [DOI] [PubMed] [Google Scholar]
  46. Tripoulas N. A., Hersperger E., La Jeunesse D., Shearn A. Molecular genetic analysis of the Drosophila melanogaster gene absent, small or homeotic discs1 (ash1). Genetics. 1994 Aug;137(4):1027–1038. doi: 10.1093/genetics/137.4.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Troemel E. R., Kimmel B. E., Bargmann C. I. Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans. Cell. 1997 Oct 17;91(2):161–169. doi: 10.1016/s0092-8674(00)80399-2. [DOI] [PubMed] [Google Scholar]
  48. Vogt R. G., Riddiford L. M. Pheromone binding and inactivation by moth antennae. Nature. 1981 Sep 10;293(5828):161–163. doi: 10.1038/293161a0. [DOI] [PubMed] [Google Scholar]
  49. Vogt R. G., Riddiford L. M., Prestwich G. D. Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8827–8831. doi: 10.1073/pnas.82.24.8827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Vogt R. G., Rybczynski R., Lerner M. R. Molecular cloning and sequencing of general odorant-binding proteins GOBP1 and GOBP2 from the tobacco hawk moth Manduca sexta: comparisons with other insect OBPs and their signal peptides. J Neurosci. 1991 Oct;11(10):2972–2984. doi: 10.1523/JNEUROSCI.11-10-02972.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Woodard C., Huang T., Sun H., Helfand S. L., Carlson J. Genetic analysis of olfactory behavior in Drosophila: a new screen yields the ota mutants. Genetics. 1989 Oct;123(2):315–326. doi: 10.1093/genetics/123.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zhao H., Ivic L., Otaki J. M., Hashimoto M., Mikoshiba K., Firestein S. Functional expression of a mammalian odorant receptor. Science. 1998 Jan 9;279(5348):237–242. doi: 10.1126/science.279.5348.237. [DOI] [PubMed] [Google Scholar]
  53. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES