Skip to main content
Genetics logoLink to Genetics
. 1998 Oct;150(2):911–919. doi: 10.1093/genetics/150.2.911

Should we expect substitution rate to depend on population size?

J L Cherry 1
PMCID: PMC1460373  PMID: 9755219

Abstract

The rate of nucleotide substitution is generally believed to be a decreasing function of effective population size, at least for nonsynonymous substitutions. This view was originally based on consideration of slightly deleterious mutations with a fixed distribution of selection coefficients. A realistic model must include the occurrence and fixation of some advantageous mutations that compensate for the loss of fitness due to deleterious substitutions. Some such models, such as so-called "fixed" models, also predict a population size effect on substitution rate. An alternative model, presented here, predicts the near absence of a population size effect on substitution rate. This model is based on concave log-fitness functions and a fixed distribution of mutational effects on the selectively important trait. Simulations of an instance of the model confirm the approximate insensitivity of the substitution rate to population size. Although much experimental evidence has been claimed to support the existence of a population size effect, the body of evidence as a whole is equivocal, and much of the evidence that is supposed to demonstrate such an effect would also suggest that it is very small. Perhaps the proposed model applies well to some genes and not so well to others, and genes therefore vary with regard to the population size effect.

Full Text

The Full Text of this article is available as a PDF (117.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akashi H. Molecular evolution between Drosophila melanogaster and D. simulans: reduced codon bias, faster rates of amino acid substitution, and larger proteins in D. melanogaster. Genetics. 1996 Nov;144(3):1297–1307. doi: 10.1093/genetics/144.3.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Easteal S., Collet C. Consistent variation in amino-acid substitution rate, despite uniformity of mutation rate: protein evolution in mammals is not neutral. Mol Biol Evol. 1994 Jul;11(4):643–647. doi: 10.1093/oxfordjournals.molbev.a040142. [DOI] [PubMed] [Google Scholar]
  3. Gillespie J. H. Substitution processes in molecular evolution. III. Deleterious alleles. Genetics. 1994 Nov;138(3):943–952. doi: 10.1093/genetics/138.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hartl D. L., Dykhuizen D. E., Dean A. M. Limits of adaptation: the evolution of selective neutrality. Genetics. 1985 Nov;111(3):655–674. doi: 10.1093/genetics/111.3.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. KIMURA M. On the probability of fixation of mutant genes in a population. Genetics. 1962 Jun;47:713–719. doi: 10.1093/genetics/47.6.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  7. Kimura M. Model of effectively neutral mutations in which selective constraint is incorporated. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3440–3444. doi: 10.1073/pnas.76.7.3440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kondrashov A. S. Muller's ratchet under epistatic selection. Genetics. 1994 Apr;136(4):1469–1473. doi: 10.1093/genetics/136.4.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Li W. H., Tanimura M., Sharp P. M. An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol. 1987;25(4):330–342. doi: 10.1007/BF02603118. [DOI] [PubMed] [Google Scholar]
  10. Moran N. A. Accelerated evolution and Muller's rachet in endosymbiotic bacteria. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2873–2878. doi: 10.1073/pnas.93.7.2873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–426. doi: 10.1093/oxfordjournals.molbev.a040410. [DOI] [PubMed] [Google Scholar]
  12. Ohta T. Synonymous and nonsynonymous substitutions in mammalian genes and the nearly neutral theory. J Mol Evol. 1995 Jan;40(1):56–63. doi: 10.1007/BF00166595. [DOI] [PubMed] [Google Scholar]
  13. Sharp P. M. Determinants of DNA sequence divergence between Escherichia coli and Salmonella typhimurium: codon usage, map position, and concerted evolution. J Mol Evol. 1991 Jul;33(1):23–33. doi: 10.1007/BF02100192. [DOI] [PubMed] [Google Scholar]
  14. Wilson A. C., Carlson S. S., White T. J. Biochemical evolution. Annu Rev Biochem. 1977;46:573–639. doi: 10.1146/annurev.bi.46.070177.003041. [DOI] [PubMed] [Google Scholar]
  15. Wolfe K. H., Sharp P. M. Mammalian gene evolution: nucleotide sequence divergence between mouse and rat. J Mol Evol. 1993 Oct;37(4):441–456. doi: 10.1007/BF00178874. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES