Skip to main content
Genetics logoLink to Genetics
. 1998 Nov;150(3):1295–1307. doi: 10.1093/genetics/150.3.1295

Constrained disequilibrium values and hitchhiking in a three-locus system.

M N Grote 1, W Klitz 1, G Thomson 1
PMCID: PMC1460391  PMID: 9799280

Abstract

Positive selection on a new mutant allele can increase the frequencies of closely linked alleles (through hitchhiking), as well as create linkage disequilibrium between them. Because this disequilibrium is induced by the selected allele, one may be able to identify loci under selection by measuring the influence of a candidate locus on pairwise disequilibrium values at nearby loci. The constrained disequilibrium values (CDV) method approaches this problem by examining differences in pairwise disequilibrium values, which have been normalized for two- and three-locus systems, respectively. We have investigated in detail the reliability of inferences based on CDV, using simulation and analytical methods. Our main results are (i) in some circumstances, CDV may not distinguish well between a selected locus and a neighboring neutral locus, but (ii) CDV seldom indicates "selection" in neutral haplotypes with moderate to large 4Nc. We conclude that, although the CDV method does not appear to precisely locate selected alleles, it can be used to screen for regions in which hitchhiking is a plausible hypothesis. We present a microsatellite data set from human chromosome 6, in which constrained disequilibrium values suggest the action of selection in a region containing the human leukocyte antigen (HLA)-A and myelin oligodendrocyte glycoprotein (MOG) loci. The connection between hitchhiking and disequilibrium has received relatively little attention, so our investigation presents opportunities to address more general issues.

Full Text

The Full Text of this article is available as a PDF (265.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguade M., Miyashita N., Langley C. H. Reduced variation in the yellow-achaete-scute region in natural populations of Drosophila melanogaster. Genetics. 1989 Jul;122(3):607–615. doi: 10.1093/genetics/122.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Begun D. J., Aquadro C. F. Evolution at the tip and base of the X chromosome in an African population of Drosophila melanogaster. Mol Biol Evol. 1995 May;12(3):382–390. doi: 10.1093/oxfordjournals.molbev.a040213. [DOI] [PubMed] [Google Scholar]
  3. Begun D. J., Aquadro C. F. Evolutionary inferences from DNA variation at the 6-phosphogluconate dehydrogenase locus in natural populations of drosophila: selection and geographic differentiation. Genetics. 1994 Jan;136(1):155–171. doi: 10.1093/genetics/136.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ewens W. J. Conditional diffusion processes in population genetics. Theor Popul Biol. 1973 Mar;4(1):21–30. doi: 10.1016/0040-5809(73)90003-8. [DOI] [PubMed] [Google Scholar]
  5. Feder J. N., Gnirke A., Thomas W., Tsuchihashi Z., Ruddy D. A., Basava A., Dormishian F., Domingo R., Jr, Ellis M. C., Fullan A. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996 Aug;13(4):399–408. doi: 10.1038/ng0896-399. [DOI] [PubMed] [Google Scholar]
  6. Feldman M. W., Franklin I., Thomson G. J. Selection in complex genetic systems. I. The symmetric equilibria of the three-locus symmetric viability model. Genetics. 1974 Jan;76(1):135–162. doi: 10.1093/genetics/76.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Golding G. B. The sampling distribution of linkage disequilibrium. Genetics. 1984 Sep;108(1):257–274. doi: 10.1093/genetics/108.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hedrick P. W. Gametic disequilibrium measures: proceed with caution. Genetics. 1987 Oct;117(2):331–341. doi: 10.1093/genetics/117.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hill W. G. Disequilibrium among several linked neutral genes in finite population 1. mean changes in disequilibrium. Theor Popul Biol. 1974 Jun;5(3):366–392. doi: 10.1016/0040-5809(74)90059-8. [DOI] [PubMed] [Google Scholar]
  10. Hill W. G. Linkage disequilibrium among multiple neutral alleles produced by mutation in finite population. Theor Popul Biol. 1975 Oct;8(2):117–126. doi: 10.1016/0040-5809(75)90028-3. [DOI] [PubMed] [Google Scholar]
  11. Hill W. G., Weir B. S. Variances and covariances of squared linkage disequilibria in finite populations. Theor Popul Biol. 1988 Feb;33(1):54–78. doi: 10.1016/0040-5809(88)90004-4. [DOI] [PubMed] [Google Scholar]
  12. Hudson R. R. Properties of a neutral allele model with intragenic recombination. Theor Popul Biol. 1983 Apr;23(2):183–201. doi: 10.1016/0040-5809(83)90013-8. [DOI] [PubMed] [Google Scholar]
  13. Hudson R. R. The sampling distribution of linkage disequilibrium under an infinite allele model without selection. Genetics. 1985 Mar;109(3):611–631. doi: 10.1093/genetics/109.3.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kaplan N. L., Hudson R. R., Langley C. H. The "hitchhiking effect" revisited. Genetics. 1989 Dec;123(4):887–899. doi: 10.1093/genetics/123.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Klitz W., Thomson G. Disequilibrium pattern analysis. II. Application to Danish HLA A and B locus data. Genetics. 1987 Aug;116(4):633–643. doi: 10.1093/genetics/116.4.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lauer P., Meyer N. C., Prass C. E., Starnes S. M., Wolff R. K., Gnirke A. Clone-contig and STS maps of the hereditary hemochromatosis region on human chromosome 6p21.3-p22. Genome Res. 1997 May;7(5):457–470. doi: 10.1101/gr.7.5.457. [DOI] [PubMed] [Google Scholar]
  17. Lewontin R C. The Interaction of Selection and Linkage. I. General Considerations; Heterotic Models. Genetics. 1964 Jan;49(1):49–67. doi: 10.1093/genetics/49.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mosser J., Jouanolle A., Gandon G., Andrieux N., Hampe A., David V. A YAC contig and an STS map spanning at least 3.9 megabasepairs telomeric to HLA-A. Immunogenetics. 1997;45(6):447–451. doi: 10.1007/s002510050230. [DOI] [PubMed] [Google Scholar]
  19. Ohta T., Kimura M. The effect of selected linked locus on heterozygosity of neutral alleles (the hitch-hiking effect). Genet Res. 1975 Jun;25(3):313–326. doi: 10.1017/s0016672300015731. [DOI] [PubMed] [Google Scholar]
  20. Parham P., Ohta T. Population biology of antigen presentation by MHC class I molecules. Science. 1996 Apr 5;272(5258):67–74. doi: 10.1126/science.272.5258.67. [DOI] [PubMed] [Google Scholar]
  21. Robinson W. P., Asmussen M. A., Thomson G. Three-locus systems impose additional constraints on pairwise disequilibria. Genetics. 1991 Nov;129(3):925–930. doi: 10.1093/genetics/129.3.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
  23. Stephan W., Langley C. H. Molecular genetic variation in the centromeric region of the X chromosome in three Drosophila ananassae populations. I. Contrasts between the vermilion and forked loci. Genetics. 1989 Jan;121(1):89–99. doi: 10.1093/genetics/121.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Thomson G. The effect of a selected locus on linked neutral loci. Genetics. 1977 Apr;85(4):753–788. doi: 10.1093/genetics/85.4.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Valdes A. M., Slatkin M., Freimer N. B. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics. 1993 Mar;133(3):737–749. doi: 10.1093/genetics/133.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES