Skip to main content
Genetics logoLink to Genetics
. 1998 Nov;150(3):1169–1175. doi: 10.1093/genetics/150.3.1169

Mitochondrial DNA variation and evolution of Japanese black cattle (Bos taurus).

H Mannen 1, S Tsuji 1, R T Loftus 1, D G Bradley 1
PMCID: PMC1460404  PMID: 9799268

Abstract

This article describes complete mitochondrial DNA displacement loop sequences from 32 Japanese Black cattle and the analysis of these data in conjunction with previously published sequences from African, European, and Indian subjects. The origins of North East Asian domesticated cattle are unclear. The earliest domestic cattle in the region were Bos taurus and may have been domesticated from local wild cattle (aurochsen; B. primigenius), or perhaps had an origin in migrants from the early domestic center of the Near East. In phylogenetic analyses, taurine sequences form a dense tree with a center consisting of intermingled European and Japanese sequences with one group of Japanese and another of all African sequences, each forming distinct clusters at extremes of the phylogeny. This topology and calibrated levels of sequence divergence suggest that the clusters may represent three different strains of ancestral aurochs, adopted at geographically and temporally separate stages of the domestication process. Unlike Africa, half of Japanese cattle sequences are topologically intermingled with the European variants. This suggests an interchange of variants that may be ancient, perhaps a legacy of the first introduction of domesticates to East Asia.

Full Text

The Full Text of this article is available as a PDF (125.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S., de Bruijn M. H., Coulson A. R., Eperon I. C., Sanger F., Young I. G. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol. 1982 Apr 25;156(4):683–717. doi: 10.1016/0022-2836(82)90137-1. [DOI] [PubMed] [Google Scholar]
  2. Bandelt H. J., Forster P., Sykes B. C., Richards M. B. Mitochondrial portraits of human populations using median networks. Genetics. 1995 Oct;141(2):743–753. doi: 10.1093/genetics/141.2.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradley D. G., MacHugh D. E., Cunningham P., Loftus R. T. Mitochondrial diversity and the origins of African and European cattle. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5131–5135. doi: 10.1073/pnas.93.10.5131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Excoffier L., Smouse P. E., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kumar S., Tamura K., Nei M. MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers. Comput Appl Biosci. 1994 Apr;10(2):189–191. doi: 10.1093/bioinformatics/10.2.189. [DOI] [PubMed] [Google Scholar]
  6. Loftus R. T., MacHugh D. E., Bradley D. G., Sharp P. M., Cunningham P. Evidence for two independent domestications of cattle. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2757–2761. doi: 10.1073/pnas.91.7.2757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MacHugh D. E., Shriver M. D., Loftus R. T., Cunningham P., Bradley D. G. Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus). Genetics. 1997 Jul;146(3):1071–1086. doi: 10.1093/genetics/146.3.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ogawa Y., Daigo M., Amasaki H. Craniometrical estimation of the native Japanese Mishima cattle, using multivariate analysis. Anat Anz. 1989;168(3):197–202. [PubMed] [Google Scholar]
  9. Parsons T. J., Muniec D. S., Sullivan K., Woodyatt N., Alliston-Greiner R., Wilson M. R., Berry D. L., Holland K. A., Weedn V. W., Gill P. A high observed substitution rate in the human mitochondrial DNA control region. Nat Genet. 1997 Apr;15(4):363–368. doi: 10.1038/ng0497-363. [DOI] [PubMed] [Google Scholar]
  10. Perkins D., Jr Fauna of Catal Hüyük: evidence for early cattle domestication in Anatolia. Science. 1969 Apr 11;164(3876):177–179. doi: 10.1126/science.164.3876.177. [DOI] [PubMed] [Google Scholar]
  11. Suzuki R., Kemp S. J., Teale A. J. Polymerase chain reaction analysis of mitochondrial DNA polymorphism in N'Dama and Zebu cattle. Anim Genet. 1993 Oct;24(5):339–343. doi: 10.1111/j.1365-2052.1993.tb00337.x. [DOI] [PubMed] [Google Scholar]
  12. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wakeley J. Substitution rate variation among sites in hypervariable region 1 of human mitochondrial DNA. J Mol Evol. 1993 Dec;37(6):613–623. doi: 10.1007/BF00182747. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES