Skip to main content
Genetics logoLink to Genetics
. 1998 Dec;150(4):1683–1692. doi: 10.1093/genetics/150.4.1683

Meiotic transmission rates correlate with physical features of rearranged centromeres in maize.

E Kaszás 1, J A Birchler 1
PMCID: PMC1460409  PMID: 9832542

Abstract

The centromere of the maize B chromosome was used as a model to study the physical features of a functional centromere. Pulsed-field gel electrophoresis was previously used to determine the organization of a repetitive sequence (referred to as the B-specific repeat) localized in the centromeric region of the maize B chromosome. The centromere is composed mostly of this repeat. In this report, a collection of 25 B chromosome derivatives that suffered from misdivision of the centromere was examined for the content and organization of the B repeat. Meiotic transmission of these derivatives was also determined and compared with rearrangements within the centromere. This analysis revealed that there is a strong correlation between the size of the centromere and meiotic transmission. In addition, the loss of a particular PmeI fragment of 370 kb considerably reduced meiotic transmission. This sequence contains a 55-kb EcoRI fragment that is also present in all but four derivatives. Because the centromere of the maize B chromosome can be divided by successive misdivisions to derivatives with centromeres of <300 kb, it should be possible for artificial chromosomes to be produced in maize.

Full Text

The Full Text of this article is available as a PDF (286.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alfenito M. R., Birchler J. A. Molecular characterization of a maize B chromosome centric sequence. Genetics. 1993 Oct;135(2):589–597. doi: 10.1093/genetics/135.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alfenito M. R., Birchler J. A. Molecular characterization of a maize B chromosome centric sequence. Genetics. 1993 Oct;135(2):589–597. doi: 10.1093/genetics/135.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aragón-Alcaide L., Miller T., Schwarzacher T., Reader S., Moore G. A cereal centromeric sequence. Chromosoma. 1996 Dec;105(5):261–268. doi: 10.1007/BF02524643. [DOI] [PubMed] [Google Scholar]
  4. Birchler J. A. Do these sequences make CENs yet? Genome Res. 1997 Nov;7(11):1035–1037. doi: 10.1101/gr.7.11.1035. [DOI] [PubMed] [Google Scholar]
  5. Bloom K. The centromere frontier: kinetochore components, microtubule-based motility, and the CEN-value paradox. Cell. 1993 May 21;73(4):621–624. doi: 10.1016/0092-8674(93)90242-i. [DOI] [PubMed] [Google Scholar]
  6. Carlson W. R., Chou T. S. B Chromosome Nondisjunction in Corn: Control by Factors near the Centromere. Genetics. 1981 Feb;97(2):379–389. doi: 10.1093/genetics/97.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carlson W. R., Roseman R. R. A new property of the maize B chromosome. Genetics. 1992 May;131(1):211–223. doi: 10.1093/genetics/131.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clarke L., Baum M., Marschall L. G., Ngan V. K., Steiner N. C. Structure and function of Schizosaccharomyces pombe centromeres. Cold Spring Harb Symp Quant Biol. 1993;58:687–695. doi: 10.1101/sqb.1993.058.01.076. [DOI] [PubMed] [Google Scholar]
  9. Dong F., Miller J. T., Jackson S. A., Wang G. L., Ronald P. C., Jiang J. Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8135–8140. doi: 10.1073/pnas.95.14.8135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Farr C. J., Bayne R. A., Kipling D., Mills W., Critcher R., Cooke H. J. Generation of a human X-derived minichromosome using telomere-associated chromosome fragmentation. EMBO J. 1995 Nov 1;14(21):5444–5454. doi: 10.1002/j.1460-2075.1995.tb00228.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  12. Hegemann J. H., Fleig U. N. The centromere of budding yeast. Bioessays. 1993 Jul;15(7):451–460. doi: 10.1002/bies.950150704. [DOI] [PubMed] [Google Scholar]
  13. Heller R., Brown K. E., Burgtorf C., Brown W. R. Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7125–7130. doi: 10.1073/pnas.93.14.7125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jiang J., Nasuda S., Dong F., Scherrer C. W., Woo S. S., Wing R. A., Gill B. S., Ward D. C. A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14210–14213. doi: 10.1073/pnas.93.24.14210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaszás E., Birchler J. A. Misdivision analysis of centromere structure in maize. EMBO J. 1996 Oct 1;15(19):5246–5255. [PMC free article] [PubMed] [Google Scholar]
  16. Le M. H., Duricka D., Karpen G. H. Islands of complex DNA are widespread in Drosophila centric heterochromatin. Genetics. 1995 Sep;141(1):283–303. doi: 10.1093/genetics/141.1.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Leach C. R., Donald T. M., Franks T. K., Spiniello S. S., Hanrahan C. F., Timmis J. N. Organisation and origin of a B chromosome centromeric sequence from Brachycome dichromosomatica. Chromosoma. 1995 Jul;103(10):708–714. doi: 10.1007/BF00344232. [DOI] [PubMed] [Google Scholar]
  18. McClintock B. A Correlation of Ring-Shaped Chromosomes with Variegation in Zea Mays. Proc Natl Acad Sci U S A. 1932 Dec;18(12):677–681. doi: 10.1073/pnas.18.12.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McClintock B. The Behavior in Successive Nuclear Divisions of a Chromosome Broken at Meiosis. Proc Natl Acad Sci U S A. 1939 Aug;25(8):405–416. doi: 10.1073/pnas.25.8.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McClintock B. The Production of Homozygous Deficient Tissues with Mutant Characteristics by Means of the Aberrant Mitotic Behavior of Ring-Shaped Chromosomes. Genetics. 1938 Jul;23(4):315–376. doi: 10.1093/genetics/23.4.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Murata M., Ogura Y., Motoyoshi F. Centromeric repetitive sequences in Arabidopsis thaliana. Jpn J Genet. 1994 Aug;69(4):361–370. doi: 10.1266/jjg.69.361. [DOI] [PubMed] [Google Scholar]
  22. Murphy T. D., Karpen G. H. Localization of centromere function in a Drosophila minichromosome. Cell. 1995 Aug 25;82(4):599–609. doi: 10.1016/0092-8674(95)90032-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Peacock W. J., Dennis E. S., Rhoades M. M., Pryor A. J. Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4490–4494. doi: 10.1073/pnas.78.7.4490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pluta A. F., Mackay A. M., Ainsztein A. M., Goldberg I. G., Earnshaw W. C. The centromere: hub of chromosomal activities. Science. 1995 Dec 8;270(5242):1591–1594. doi: 10.1126/science.270.5242.1591. [DOI] [PubMed] [Google Scholar]
  25. Rhoades M. M., Vilkomerson H. On the Anaphase Movement of Chromosomes. Proc Natl Acad Sci U S A. 1942 Oct;28(10):433–436. doi: 10.1073/pnas.28.10.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Roman H. Mitotic Nondisjunction in the Case of Interchanges Involving the B-Type Chromosome in Maize. Genetics. 1947 Jul;32(4):391–409. doi: 10.1093/genetics/32.4.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Round E. K., Flowers S. K., Richards E. J. Arabidopsis thaliana centromere regions: genetic map positions and repetitive DNA structure. Genome Res. 1997 Nov;7(11):1045–1053. doi: 10.1101/gr.7.11.1045. [DOI] [PubMed] [Google Scholar]
  28. Sun X., Wahlstrom J., Karpen G. Molecular structure of a functional Drosophila centromere. Cell. 1997 Dec 26;91(7):1007–1019. doi: 10.1016/s0092-8674(00)80491-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thompson H., Schmidt R., Brandes A., Heslop-Harrison J. S., Dean C. A novel repetitive sequence associated with the centromeric regions of Arabidopsis thaliana chromosomes. Mol Gen Genet. 1996 Nov 27;253(1-2):247–252. doi: 10.1007/s004380050319. [DOI] [PubMed] [Google Scholar]
  30. Thompson H., Schmidt R., Brandes A., Heslop-Harrison J. S., Dean C. A novel repetitive sequence associated with the centromeric regions of Arabidopsis thaliana chromosomes. Mol Gen Genet. 1996 Nov 27;253(1-2):247–252. doi: 10.1007/s004380050319. [DOI] [PubMed] [Google Scholar]
  31. Tyler-Smith C., Oakey R. J., Larin Z., Fisher R. B., Crocker M., Affara N. A., Ferguson-Smith M. A., Muenke M., Zuffardi O., Jobling M. A. Localization of DNA sequences required for human centromere function through an analysis of rearranged Y chromosomes. Nat Genet. 1993 Dec;5(4):368–375. doi: 10.1038/ng1293-368. [DOI] [PubMed] [Google Scholar]
  32. Tyler-Smith C., Willard H. F. Mammalian chromosome structure. Curr Opin Genet Dev. 1993 Jun;3(3):390–397. doi: 10.1016/0959-437x(93)90110-b. [DOI] [PubMed] [Google Scholar]
  33. Wevrick R., Willard H. F. Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9394–9398. doi: 10.1073/pnas.86.23.9394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yu H. G., Hiatt E. N., Chan A., Sweeney M., Dawe R. K. Neocentromere-mediated chromosome movement in maize. J Cell Biol. 1997 Nov 17;139(4):831–840. doi: 10.1083/jcb.139.4.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zinkowski R. P., Meyne J., Brinkley B. R. The centromere-kinetochore complex: a repeat subunit model. J Cell Biol. 1991 Jun;113(5):1091–1110. doi: 10.1083/jcb.113.5.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES