Skip to main content
Genetics logoLink to Genetics
. 1998 Dec;150(4):1693–1698. doi: 10.1093/genetics/150.4.1693

An adaptive hypothesis for the evolution of the Y chromosome.

H A Orr 1, Y Kim 1
PMCID: PMC1460413  PMID: 9832543

Abstract

Population geneticists remain unsure of the forces driving the evolution of Y chromosomes. Here we consider the possibility that the degeneration of the Y reflects its inability to evolve adaptively. Because the overwhelming majority of favorable mutations on a nonrecombining proto-Y suffer a zero probability of fixation, the fitness of the Y must lag far behind that of the recombining X. At some point, this disparity will grow so large that selection favors an increase in the expression of (fit) X-linked alleles and a decrease in the expression of (unfit) Y-linked alleles. Our calculations suggest that this process acts far more rapidly than hitchhiking-induced erosion of the Y and at least as rapidly as the fixation of deleterious alleles on the Y by background selection. Most important, this hypothesis can explain the evolution of Y chromosomes in taxa such as Drosophila that have very large population sizes.

Full Text

The Full Text of this article is available as a PDF (88.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton N. H. Linkage and the limits to natural selection. Genetics. 1995 Jun;140(2):821–841. doi: 10.1093/genetics/140.2.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Charlesworth B., Charlesworth D. Rapid fixation of deleterious alleles can be caused by Muller's ratchet. Genet Res. 1997 Aug;70(1):63–73. doi: 10.1017/s0016672397002899. [DOI] [PubMed] [Google Scholar]
  3. Charlesworth B. Model for evolution of Y chromosomes and dosage compensation. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5618–5622. doi: 10.1073/pnas.75.11.5618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Charlesworth B. The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet Res. 1994 Jun;63(3):213–227. doi: 10.1017/s0016672300032365. [DOI] [PubMed] [Google Scholar]
  5. Charlesworth B. The evolution of chromosomal sex determination and dosage compensation. Curr Biol. 1996 Feb 1;6(2):149–162. doi: 10.1016/s0960-9822(02)00448-7. [DOI] [PubMed] [Google Scholar]
  6. Goodfellow P., Banting G., Sheer D., Ropers H. H., Caine A., Ferguson-Smith M. A., Povey S., Voss R. Genetic evidence that a Y-linked gene in man is homologous to a gene on the X chromosome. Nature. 1983 Mar 24;302(5906):346–349. doi: 10.1038/302346a0. [DOI] [PubMed] [Google Scholar]
  7. Moriyama E. N., Powell J. R. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol. 1996 Jan;13(1):261–277. doi: 10.1093/oxfordjournals.molbev.a025563. [DOI] [PubMed] [Google Scholar]
  8. Muller H J. Genetic Variability, Twin Hybrids and Constant Hybrids, in a Case of Balanced Lethal Factors. Genetics. 1918 Sep;3(5):422–499. doi: 10.1093/genetics/3.5.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Peck J. R. A ruby in the rubbish: beneficial mutations, deleterious mutations and the evolution of sex. Genetics. 1994 Jun;137(2):597–606. doi: 10.1093/genetics/137.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rice W. R. Genetic hitchhiking and the evolution of reduced genetic activity of the Y sex chromosome. Genetics. 1987 May;116(1):161–167. doi: 10.1093/genetics/116.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Stephan W., Chao L., Smale J. G. The advance of Muller's ratchet in a haploid asexual population: approximate solutions based on diffusion theory. Genet Res. 1993 Jun;61(3):225–231. doi: 10.1017/s0016672300031384. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES