Skip to main content
Genetics logoLink to Genetics
. 1998 Dec;150(4):1539–1549. doi: 10.1093/genetics/150.4.1539

In vivo chromatin accessibility correlates with gene silencing in Drosophila.

A Boivin 1, J M Dura 1
PMCID: PMC1460423  PMID: 9832530

Abstract

Gene silencing by heterochromatin is a well-known phenomenon that, in Drosophila, is called position effect variegation (PEV). The long-held hypothesis that this gene silencing is associated with an altered chromatin structure received direct support only recently. Another gene-silencing phenomenon in Drosophila, although similar in its phenotype of variegation, has been shown to be associated with euchromatic sequences and is dependent on developmental regulators of the Polycomb group (Pc-G) of gene products. One model proposes that the Pc-G products may cause a local heterochromatinization that maintains a repressed state of transcription of their target genes. Here, we test these models by measuring the accessibility of white or miniwhite sequences, in different contexts, to the Escherichia coli dam DNA methyltransferase in vivo. We present evidence that PEV and Pc-G-mediated repression mechanisms, although based on different protein factors, may indeed involve similar higher-order chromatin structure.

Full Text

The Full Text of this article is available as a PDF (371.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bienz M., Müller J. Transcriptional silencing of homeotic genes in Drosophila. Bioessays. 1995 Sep;17(9):775–784. doi: 10.1002/bies.950170907. [DOI] [PubMed] [Google Scholar]
  2. Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. doi: 10.1242/dev.118.2.401. [DOI] [PubMed] [Google Scholar]
  3. Carrington E. A., Jones R. S. The Drosophila Enhancer of zeste gene encodes a chromosomal protein: examination of wild-type and mutant protein distribution. Development. 1996 Dec;122(12):4073–4083. doi: 10.1242/dev.122.12.4073. [DOI] [PubMed] [Google Scholar]
  4. Chan C. S., Rastelli L., Pirrotta V. A Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. EMBO J. 1994 Jun 1;13(11):2553–2564. doi: 10.1002/j.1460-2075.1994.tb06545.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheng N. N., Sinclair D. A., Campbell R. B., Brock H. W. Interactions of polyhomeotic with Polycomb group genes of Drosophila melanogaster. Genetics. 1994 Dec;138(4):1151–1162. doi: 10.1093/genetics/138.4.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cléard F., Delattre M., Spierer P. SU(VAR)3-7, a Drosophila heterochromatin-associated protein and companion of HP1 in the genomic silencing of position-effect variegation. EMBO J. 1997 Sep 1;16(17):5280–5288. doi: 10.1093/emboj/16.17.5280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Rubertis F., Kadosh D., Henchoz S., Pauli D., Reuter G., Struhl K., Spierer P. The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature. 1996 Dec 12;384(6609):589–591. doi: 10.1038/384589a0. [DOI] [PubMed] [Google Scholar]
  8. DeCamillis M., Cheng N. S., Pierre D., Brock H. W. The polyhomeotic gene of Drosophila encodes a chromatin protein that shares polytene chromosome-binding sites with Polycomb. Genes Dev. 1992 Feb;6(2):223–232. doi: 10.1101/gad.6.2.223. [DOI] [PubMed] [Google Scholar]
  9. Dura J. M., Taillebourg E., Préat T. The Drosophila learning and memory gene linotte encodes a putative receptor tyrosine kinase homologous to the human RYK gene product. FEBS Lett. 1995 Aug 21;370(3):250–254. doi: 10.1016/0014-5793(95)00847-3. [DOI] [PubMed] [Google Scholar]
  10. Eissenberg J. C., Morris G. D., Reuter G., Hartnett T. The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. Genetics. 1992 Jun;131(2):345–352. doi: 10.1093/genetics/131.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eissenberg J. C. Position effect variegation in Drosophila: towards a genetics of chromatin assembly. Bioessays. 1989 Jul;11(1):14–17. doi: 10.1002/bies.950110105. [DOI] [PubMed] [Google Scholar]
  12. Fauvarque M. O., Dura J. M. polyhomeotic regulatory sequences induce developmental regulator-dependent variegation and targeted P-element insertions in Drosophila. Genes Dev. 1993 Aug;7(8):1508–1520. doi: 10.1101/gad.7.8.1508. [DOI] [PubMed] [Google Scholar]
  13. Fauvarque M. O., Zuber V., Dura J. M. Regulation of polyhomeotic transcription may involve local changes in chromatin activity in Drosophila. Mech Dev. 1995 Aug;52(2-3):343–355. doi: 10.1016/0925-4773(95)00412-t. [DOI] [PubMed] [Google Scholar]
  14. Fisher-Adams G., Grunstein M. Yeast histone H4 and H3 N-termini have different effects on the chromatin structure of the GAL1 promoter. EMBO J. 1995 Apr 3;14(7):1468–1477. doi: 10.1002/j.1460-2075.1995.tb07133.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Franke A., DeCamillis M., Zink D., Cheng N., Brock H. W., Paro R. Polycomb and polyhomeotic are constituents of a multimeric protein complex in chromatin of Drosophila melanogaster. EMBO J. 1992 Aug;11(8):2941–2950. doi: 10.1002/j.1460-2075.1992.tb05364.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Garzino V., Pereira A., Laurenti P., Graba Y., Levis R. W., Le Parco Y., Pradel J. Cell lineage-specific expression of modulo, a dose-dependent modifier of variegation in Drosophila. EMBO J. 1992 Dec;11(12):4471–4479. doi: 10.1002/j.1460-2075.1992.tb05548.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Geyer P. K., Corces V. G. Separate regulatory elements are responsible for the complex pattern of tissue-specific and developmental transcription of the yellow locus in Drosophila melanogaster. Genes Dev. 1987 Nov;1(9):996–1004. doi: 10.1101/gad.1.9.996. [DOI] [PubMed] [Google Scholar]
  18. Gindhart J. G., Jr, King A. N., Kaufman T. C. Characterization of the cis-regulatory region of the Drosophila homeotic gene Sex combs reduced. Genetics. 1995 Feb;139(2):781–795. doi: 10.1093/genetics/139.2.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gottschling D. E. Telomere-proximal DNA in Saccharomyces cerevisiae is refractory to methyltransferase activity in vivo. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4062–4065. doi: 10.1073/pnas.89.9.4062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hayashi S., Ruddell A., Sinclair D., Grigliatti T. Chromosomal structure is altered by mutations that suppress or enhance position effect variegation. Chromosoma. 1990 Oct;99(6):391–400. doi: 10.1007/BF01726690. [DOI] [PubMed] [Google Scholar]
  21. Henikoff S. Dosage-dependent modification of position-effect variegation in Drosophila. Bioessays. 1996 May;18(5):401–409. doi: 10.1002/bies.950180510. [DOI] [PubMed] [Google Scholar]
  22. Hülsmann K. H., Quaas R., Georgalis Y., Saenger W., Hahn U. High-level expression of a semisynthetic dam gene in Escherichia coli. Gene. 1991 Feb 1;98(1):83–88. doi: 10.1016/0378-1119(91)90107-m. [DOI] [PubMed] [Google Scholar]
  23. Kennison J. A. The Polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Annu Rev Genet. 1995;29:289–303. doi: 10.1146/annurev.ge.29.120195.001445. [DOI] [PubMed] [Google Scholar]
  24. Kladde M. P., Simpson R. T. Positioned nucleosomes inhibit Dam methylation in vivo. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1361–1365. doi: 10.1073/pnas.91.4.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kladde M. P., Xu M., Simpson R. T. Direct study of DNA-protein interactions in repressed and active chromatin in living cells. EMBO J. 1996 Nov 15;15(22):6290–6300. [PMC free article] [PubMed] [Google Scholar]
  26. Laible G., Wolf A., Dorn R., Reuter G., Nislow C., Lebersorger A., Popkin D., Pillus L., Jenuwein T. Mammalian homologues of the Polycomb-group gene Enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at S. cerevisiae telomeres. EMBO J. 1997 Jun 2;16(11):3219–3232. doi: 10.1093/emboj/16.11.3219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Locke J., Kotarski M. A., Tartof K. D. Dosage-dependent modifiers of position effect variegation in Drosophila and a mass action model that explains their effect. Genetics. 1988 Sep;120(1):181–198. doi: 10.1093/genetics/120.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lonie A., D'Andrea R., Paro R., Saint R. Molecular characterisation of the Polycomblike gene of Drosophila melanogaster, a trans-acting negative regulator of homeotic gene expression. Development. 1994 Sep;120(9):2629–2636. doi: 10.1242/dev.120.9.2629. [DOI] [PubMed] [Google Scholar]
  29. McCall K., Bender W. Probes of chromatin accessibility in the Drosophila bithorax complex respond differently to Polycomb-mediated repression. EMBO J. 1996 Feb 1;15(3):569–580. [PMC free article] [PubMed] [Google Scholar]
  30. Orlando V., Paro R. Chromatin multiprotein complexes involved in the maintenance of transcription patterns. Curr Opin Genet Dev. 1995 Apr;5(2):174–179. doi: 10.1016/0959-437x(95)80005-0. [DOI] [PubMed] [Google Scholar]
  31. Paro R. Mechanisms of heritable gene repression during development of Drosophila. Curr Opin Cell Biol. 1993 Dec;5(6):999–1005. doi: 10.1016/0955-0674(93)90084-4. [DOI] [PubMed] [Google Scholar]
  32. Reuter G., Giarre M., Farah J., Gausz J., Spierer A., Spierer P. Dependence of position-effect variegation in Drosophila on dose of a gene encoding an unusual zinc-finger protein. Nature. 1990 Mar 15;344(6263):219–223. doi: 10.1038/344219a0. [DOI] [PubMed] [Google Scholar]
  33. Reuter G., Spierer P. Position effect variegation and chromatin proteins. Bioessays. 1992 Sep;14(9):605–612. doi: 10.1002/bies.950140907. [DOI] [PubMed] [Google Scholar]
  34. Robertson H. M., Preston C. R., Phillis R. W., Johnson-Schlitz D. M., Benz W. K., Engels W. R. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics. 1988 Mar;118(3):461–470. doi: 10.1093/genetics/118.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
  36. Schlossherr J., Eggert H., Paro R., Cremer S., Jack R. S. Gene inactivation in Drosophila mediated by the Polycomb gene product or by position-effect variegation does not involve major changes in the accessibility of the chromatin fibre. Mol Gen Genet. 1994 May 25;243(4):453–462. doi: 10.1007/BF00280476. [DOI] [PubMed] [Google Scholar]
  37. Sinclair D. A., Clegg N. J., Antonchuk J., Milne T. A., Stankunas K., Ruse C., Grigliatti T. A., Kassis J. A., Brock H. W. Enhancer of Polycomb is a suppressor of position-effect variegation in Drosophila melanogaster. Genetics. 1998 Jan;148(1):211–220. doi: 10.1093/genetics/148.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sinclair D. A., Milne T. A., Hodgson J. W., Shellard J., Salinas C. A., Kyba M., Randazzo F., Brock H. W. The Additional sex combs gene of Drosophila encodes a chromatin protein that binds to shared and unique Polycomb group sites on polytene chromosomes. Development. 1998 Apr;125(7):1207–1216. doi: 10.1242/dev.125.7.1207. [DOI] [PubMed] [Google Scholar]
  39. Singh J., Klar A. J. Active genes in budding yeast display enhanced in vivo accessibility to foreign DNA methylases: a novel in vivo probe for chromatin structure of yeast. Genes Dev. 1992 Feb;6(2):186–196. doi: 10.1101/gad.6.2.186. [DOI] [PubMed] [Google Scholar]
  40. Strutt H., Cavalli G., Paro R. Co-localization of Polycomb protein and GAGA factor on regulatory elements responsible for the maintenance of homeotic gene expression. EMBO J. 1997 Jun 16;16(12):3621–3632. doi: 10.1093/emboj/16.12.3621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tartof K. D., Bishop C., Jones M., Hobbs C. A., Locke J. Towards an understanding of position effect variegation. Dev Genet. 1989;10(3):162–176. doi: 10.1002/dvg.1020100306. [DOI] [PubMed] [Google Scholar]
  42. Tschiersch B., Hofmann A., Krauss V., Dorn R., Korge G., Reuter G. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 1994 Aug 15;13(16):3822–3831. doi: 10.1002/j.1460-2075.1994.tb06693.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wallrath L. L., Elgin S. C. Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev. 1995 May 15;9(10):1263–1277. doi: 10.1101/gad.9.10.1263. [DOI] [PubMed] [Google Scholar]
  44. Wines D. R., Talbert P. B., Clark D. V., Henikoff S. Introduction of a DNA methyltransferase into Drosophila to probe chromatin structure in vivo. Chromosoma. 1996;104(5):332–340. doi: 10.1007/BF00337221. [DOI] [PubMed] [Google Scholar]
  45. Wodarz A., Hinz U., Engelbert M., Knust E. Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell. 1995 Jul 14;82(1):67–76. doi: 10.1016/0092-8674(95)90053-5. [DOI] [PubMed] [Google Scholar]
  46. Zink B., Engström Y., Gehring W. J., Paro R. Direct interaction of the Polycomb protein with Antennapedia regulatory sequences in polytene chromosomes of Drosophila melanogaster. EMBO J. 1991 Jan;10(1):153–162. doi: 10.1002/j.1460-2075.1991.tb07931.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zink B., Paro R. In vivo binding pattern of a trans-regulator of homoeotic genes in Drosophila melanogaster. Nature. 1989 Feb 2;337(6206):468–471. doi: 10.1038/337468a0. [DOI] [PubMed] [Google Scholar]
  48. Zink D., Paro R. Drosophila Polycomb-group regulated chromatin inhibits the accessibility of a trans-activator to its target DNA. EMBO J. 1995 Nov 15;14(22):5660–5671. doi: 10.1002/j.1460-2075.1995.tb00253.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zuckerkandl E. A possible role of "inert" heterochromatin in cell differentiation. Action of and competition for "locking" molecules. Biochimie. 1974;56(6-7):937–954. doi: 10.1016/s0300-9084(74)80516-x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES