Skip to main content
Genetics logoLink to Genetics
. 1998 Dec;150(4):1341–1348. doi: 10.1093/genetics/150.4.1341

Detecting linkage disequilibrium in bacterial populations.

B Haubold 1, M Travisano 1, P B Rainey 1, R R Hudson 1
PMCID: PMC1460433  PMID: 9832514

Abstract

The distribution of the number of pairwise differences calculated from comparisons between n haploid genomes has frequently been used as a starting point for testing the hypothesis of linkage equilibrium. For this purpose the variance of the pairwise differences, VD, is used as a test statistic to evaluate the null hypothesis that all loci are in linkage equilibrium. The problem is to determine the critical value of the distribution of VD. This critical value can be estimated either by Monte Carlo simulation or by assuming that VD is distributed normally and calculating a one-tailed 95% critical value for VD, L, L = EVD + 1.645 sqrt(VarVD), where E(VD) is the expectation of VD, and Var(VD) is the variance of VD. If VD (observed) > L, the null hypothesis of linkage equilibrium is rejected. Using Monte Carlo simulation we show that the formula currently available for Var(VD) is incorrect, especially for genetically highly diverse data. This has implications for hypothesis testing in bacterial populations, which are often genetically highly diverse. For this reason we derive a new, exact formula for Var(VD). The distribution of VD is examined and shown to approach normality as the sample size increases. This makes the new formula a useful tool in the investigation of large data sets, where testing for linkage using Monte Carlo simulation can be very time consuming. Application of the new formula, in conjunction with Monte Carlo simulation, to populations of Bradyrhizobium japonicum, Rhizobium leguminosarum, and Bacillus subtilis reveals linkage disequilibrium where linkage equilibrium has previously been reported.

Full Text

The Full Text of this article is available as a PDF (133.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bottomley P. J., Cheng H. H., Strain S. R. Genetic structure and symbiotic characteristics of a bradyrhizobium population recovered from a pasture soil. Appl Environ Microbiol. 1994 Jun;60(6):1754–1761. doi: 10.1128/aem.60.6.1754-1761.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown A. H., Feldman M. W., Nevo E. Multilocus Structure of Natural Populations of HORDEUM SPONTANEUM. Genetics. 1980 Oct;96(2):523–536. doi: 10.1093/genetics/96.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Go M. F., Kapur V., Graham D. Y., Musser J. M. Population genetic analysis of Helicobacter pylori by multilocus enzyme electrophoresis: extensive allelic diversity and recombinational population structure. J Bacteriol. 1996 Jul;178(13):3934–3938. doi: 10.1128/jb.178.13.3934-3938.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Guttman D. S., Dykhuizen D. E. Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science. 1994 Nov 25;266(5189):1380–1383. doi: 10.1126/science.7973728. [DOI] [PubMed] [Google Scholar]
  5. Istock C. A., Duncan K. E., Ferguson N., Zhou X. Sexuality in a natural population of bacteria--Bacillus subtilis challenges the clonal paradigm. Mol Ecol. 1992 Aug;1(2):95–103. doi: 10.1111/j.1365-294x.1992.tb00161.x. [DOI] [PubMed] [Google Scholar]
  6. Maruyama T., Kimura M. Genetic variability and effective population size when local extinction and recolonization of subpopulations are frequent. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6710–6714. doi: 10.1073/pnas.77.11.6710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Milkman R. Electrophoretic variation in Escherichia coli from natural sources. Science. 1973 Dec 7;182(4116):1024–1026. doi: 10.1126/science.182.4116.1024. [DOI] [PubMed] [Google Scholar]
  8. O'Rourke M., Stevens E. Genetic structure of Neisseria gonorrhoeae populations: a non-clonal pathogen. J Gen Microbiol. 1993 Nov;139(11):2603–2611. doi: 10.1099/00221287-139-11-2603. [DOI] [PubMed] [Google Scholar]
  9. Ochman H., Selander R. K. Standard reference strains of Escherichia coli from natural populations. J Bacteriol. 1984 Feb;157(2):690–693. doi: 10.1128/jb.157.2.690-693.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Selander R. K., Levin B. R. Genetic diversity and structure in Escherichia coli populations. Science. 1980 Oct 31;210(4469):545–547. doi: 10.1126/science.6999623. [DOI] [PubMed] [Google Scholar]
  11. Smith J. M., Smith N. H., O'Rourke M., Spratt B. G. How clonal are bacteria? Proc Natl Acad Sci U S A. 1993 May 15;90(10):4384–4388. doi: 10.1073/pnas.90.10.4384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Souza V., Nguyen T. T., Hudson R. R., Piñero D., Lenski R. E. Hierarchical analysis of linkage disequilibrium in Rhizobium populations: evidence for sex? Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8389–8393. doi: 10.1073/pnas.89.17.8389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Whittam T. S., Ochman H., Selander R. K. Multilocus genetic structure in natural populations of Escherichia coli. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1751–1755. doi: 10.1073/pnas.80.6.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wise M. G., Shimkets L. J., McArthur J. V. Genetic structure of a lotic population of Burkolderia (Pseudomonas) cepacia. Appl Environ Microbiol. 1995 May;61(5):1791–1798. doi: 10.1128/aem.61.5.1791-1798.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES