Skip to main content
Genetics logoLink to Genetics
. 1998 Dec;150(4):1577–1584. doi: 10.1093/genetics/150.4.1577

Isochore evolution in mammals: a human-like ancestral structure.

N Galtier 1, D Mouchiroud 1
PMCID: PMC1460440  PMID: 9832533

Abstract

Codon usage in mammals is mainly determined by the spatial arrangement of genomic G + C-content, i.e., the isochore structure. Ancestral G + C-content at third codon positions of 27 nuclear protein-coding genes of eutherian mammals was estimated by maximum-likelihood analysis on the basis of a nonhomogeneous DNA substitution model, accounting for variable base compositions among present-day sequences. Data consistently supported a human-like ancestral pattern, i.e., highly variable G + C-content among genes. The mouse genomic structure-more narrow G + C-content distribution-would be a derived state. The circumstances of isochore evolution are discussed with respect to this result. A possible relationship between G + C-content homogenization in murid genomes and high mutation rate is proposed, consistent with the negative selection hypothesis for isochore maintenance in mammals.

Full Text

The Full Text of this article is available as a PDF (116.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernardi G., Bernardi G. Compositional patterns in the nuclear genome of cold-blooded vertebrates. J Mol Evol. 1990 Oct;31(4):265–281. doi: 10.1007/BF02101122. [DOI] [PubMed] [Google Scholar]
  2. Bernardi G., Olofsson B., Filipski J., Zerial M., Salinas J., Cuny G., Meunier-Rotival M., Rodier F. The mosaic genome of warm-blooded vertebrates. Science. 1985 May 24;228(4702):953–958. doi: 10.1126/science.4001930. [DOI] [PubMed] [Google Scholar]
  3. Bernardi G. The vertebrate genome: isochores and evolution. Mol Biol Evol. 1993 Jan;10(1):186–204. doi: 10.1093/oxfordjournals.molbev.a039994. [DOI] [PubMed] [Google Scholar]
  4. Cao Y., Okada N., Hasegawa M. Phylogenetic position of guinea pigs revisited. Mol Biol Evol. 1997 Apr;14(4):461–464. doi: 10.1093/oxfordjournals.molbev.a025782. [DOI] [PubMed] [Google Scholar]
  5. Clay O., Cacciò S., Zoubak S., Mouchiroud D., Bernardi G. Human coding and noncoding DNA: compositional correlations. Mol Phylogenet Evol. 1996 Feb;5(1):2–12. doi: 10.1006/mpev.1996.0002. [DOI] [PubMed] [Google Scholar]
  6. Cross S. H., Lee M., Clark V. H., Craig J. M., Bird A. P., Bickmore W. A. The chromosomal distribution of CpG islands in the mouse: evidence for genome scrambling in the rodent lineage. Genomics. 1997 Mar 15;40(3):454–461. doi: 10.1006/geno.1996.4598. [DOI] [PubMed] [Google Scholar]
  7. D'Erchia A. M., Gissi C., Pesole G., Saccone C., Arnason U. The guinea-pig is not a rodent. Nature. 1996 Jun 13;381(6583):597–600. doi: 10.1038/381597a0. [DOI] [PubMed] [Google Scholar]
  8. Duret L., Mouchiroud D., Gautier C. Statistical analysis of vertebrate sequences reveals that long genes are scarce in GC-rich isochores. J Mol Evol. 1995 Mar;40(3):308–317. doi: 10.1007/BF00163235. [DOI] [PubMed] [Google Scholar]
  9. Duret L., Mouchiroud D., Gouy M. HOVERGEN: a database of homologous vertebrate genes. Nucleic Acids Res. 1994 Jun 25;22(12):2360–2365. doi: 10.1093/nar/22.12.2360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eyre-Walker A. Evidence that both G + C rich and G + C poor isochores are replicated early and late in the cell cycle. Nucleic Acids Res. 1992 Apr 11;20(7):1497–1501. doi: 10.1093/nar/20.7.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–376. doi: 10.1007/BF01734359. [DOI] [PubMed] [Google Scholar]
  12. Galtier N., Gouy M., Gautier C. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci. 1996 Dec;12(6):543–548. doi: 10.1093/bioinformatics/12.6.543. [DOI] [PubMed] [Google Scholar]
  13. Galtier N., Gouy M. Inferring pattern and process: maximum-likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis. Mol Biol Evol. 1998 Jul;15(7):871–879. doi: 10.1093/oxfordjournals.molbev.a025991. [DOI] [PubMed] [Google Scholar]
  14. Graur D., Duret L., Gouy M. Phylogenetic position of the order Lagomorpha (rabbits, hares and allies) Nature. 1996 Jan 25;379(6563):333–335. doi: 10.1038/379333a0. [DOI] [PubMed] [Google Scholar]
  15. Graur D., Hide W. A., Li W. H. Is the guinea-pig a rodent? Nature. 1991 Jun 20;351(6328):649–652. doi: 10.1038/351649a0. [DOI] [PubMed] [Google Scholar]
  16. Hart R. W., Setlow R. B. Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammalian species. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2169–2173. doi: 10.1073/pnas.71.6.2169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hasegawa M., Kishino H., Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22(2):160–174. doi: 10.1007/BF02101694. [DOI] [PubMed] [Google Scholar]
  18. Janke A., Xu X., Arnason U. The complete mitochondrial genome of the wallaroo (Macropus robustus) and the phylogenetic relationship among Monotremata, Marsupialia, and Eutheria. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1276–1281. doi: 10.1073/pnas.94.4.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Li W. H., Ellsworth D. L., Krushkal J., Chang B. H., Hewett-Emmett D. Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol Phylogenet Evol. 1996 Feb;5(1):182–187. doi: 10.1006/mpev.1996.0012. [DOI] [PubMed] [Google Scholar]
  20. Matsuo K., Clay O., Takahashi T., Silke J., Schaffner W. Evidence for erosion of mouse CpG islands during mammalian evolution. Somat Cell Mol Genet. 1993 Nov;19(6):543–555. doi: 10.1007/BF01233381. [DOI] [PubMed] [Google Scholar]
  21. Mouchiroud D., Gautier C., Bernardi G. The compositional distribution of coding sequences and DNA molecules in humans and murids. J Mol Evol. 1988;27(4):311–320. doi: 10.1007/BF02101193. [DOI] [PubMed] [Google Scholar]
  22. Mouchiroud D., Gautier C. Codon usage changes and sequence dissimilarity between human and rat. J Mol Evol. 1990 Aug;31(2):81–91. doi: 10.1007/BF02109477. [DOI] [PubMed] [Google Scholar]
  23. Robinson M., Catzeflis F., Briolay J., Mouchiroud D. Molecular phylogeny of rodents, with special emphasis on murids: evidence from nuclear gene LCAT. Mol Phylogenet Evol. 1997 Dec;8(3):423–434. doi: 10.1006/mpev.1997.0424. [DOI] [PubMed] [Google Scholar]
  24. Robinson M., Gautier C., Mouchiroud D. Evolution of isochores in rodents. Mol Biol Evol. 1997 Aug;14(8):823–828. doi: 10.1093/oxfordjournals.molbev.a025823. [DOI] [PubMed] [Google Scholar]
  25. Sabeur G., Macaya G., Kadi F., Bernardi G. The isochore patterns of mammalian genomes and their phylogenetic implications. J Mol Evol. 1993 Aug;37(2):93–108. doi: 10.1007/BF02407344. [DOI] [PubMed] [Google Scholar]
  26. Saccone S., Caccio S., Perani P., Andreozzi L., Rapisarda A., Motta S., Bernardi G. Compositional mapping of mouse chromosomes and identification of the gene-rich regions. Chromosome Res. 1997 Aug;5(5):293–300. doi: 10.1023/B:CHRO.0000038759.09018.a7. [DOI] [PubMed] [Google Scholar]
  27. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  28. Salinas J., Zerial M., Filipski J., Bernardi G. Gene distribution and nucleotide sequence organization in the mouse genome. Eur J Biochem. 1986 Nov 3;160(3):469–478. doi: 10.1111/j.1432-1033.1986.tb10063.x. [DOI] [PubMed] [Google Scholar]
  29. Sharp P. M., Averof M., Lloyd A. T., Matassi G., Peden J. F. DNA sequence evolution: the sounds of silence. Philos Trans R Soc Lond B Biol Sci. 1995 Sep 29;349(1329):241–247. doi: 10.1098/rstb.1995.0108. [DOI] [PubMed] [Google Scholar]
  30. Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol. 1992 Jul;9(4):678–687. doi: 10.1093/oxfordjournals.molbev.a040752. [DOI] [PubMed] [Google Scholar]
  31. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wolfe K. H., Sharp P. M., Li W. H. Mutation rates differ among regions of the mammalian genome. Nature. 1989 Jan 19;337(6204):283–285. doi: 10.1038/337283a0. [DOI] [PubMed] [Google Scholar]
  33. Zoubak S., D'Onofrio G., Cacciò S., Bernardi G., Bernardi G. Specific compositional patterns of synonymous positions in homologous mammalian genes. J Mol Evol. 1995 Mar;40(3):293–307. doi: 10.1007/BF00163234. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES