Abstract
Estimating the resolution power of mapping analysis of linked quantitative trait loci (QTL) remains a difficult problem, which has been previously addressed mainly by Monte Carlo simulations. The analytical method of evaluation of the expected LOD developed in this article spreads the "deterministic sampling" approach for the case of two linked QTL for single- and two-trait analysis. Several complicated questions are addressed through this evaluation: the dependence of QTL detection power on the QTL effects, residual correlation between the traits, and the effect of epistatic interaction between the QTL for one or both traits on expected LOD (ELOD), etc. Although this method gives only an asymptotic estimation of ELOD, it allows one to get an approximate assessment of a broad spectrum of mapping situations. A good correspondence was found between the ELODs predicted by the model and LOD values averaged over Monte Carlo simulations.
Full Text
The Full Text of this article is available as a PDF (211.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boehnke M., Moll P. P. Identifying pedigrees segregating at a major locus for a quantitative trait: an efficient strategy for linkage analysis. Am J Hum Genet. 1989 Feb;44(2):216–224. [PMC free article] [PubMed] [Google Scholar]
- Doebley J., Stec A., Gustus C. teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics. 1995 Sep;141(1):333–346. doi: 10.1093/genetics/141.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eaves L. J. Effect of genetic architecture on the power of human linkage studies to resolve the contribution of quantitative trait loci. Heredity (Edinb) 1994 Feb;72(Pt 2):175–192. doi: 10.1038/hdy.1994.25. [DOI] [PubMed] [Google Scholar]
- Fu Y. B., Ritland K. Marker-based inferences about epistasis for genes influencing inbreeding depression. Genetics. 1996 Sep;144(1):339–348. doi: 10.1093/genetics/144.1.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haley C. S., Knott S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. doi: 10.1038/hdy.1992.131. [DOI] [PubMed] [Google Scholar]
- Jansen R. C. Interval mapping of multiple quantitative trait loci. Genetics. 1993 Sep;135(1):205–211. doi: 10.1093/genetics/135.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jansen R. C., Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994 Apr;136(4):1447–1455. doi: 10.1093/genetics/136.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang C., Zeng Z. B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics. 1995 Jul;140(3):1111–1127. doi: 10.1093/genetics/140.3.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korol' A. B., Preigel' I. A., Bocharnikova N. I. Stseplenie mezhdu lokusami kolichestvennykh priznakov i markernymi lokusami. Soobshchenie V. Sovmestnyi analiz neskol'kikh markernykh i kolichestvennykh priznakov. Genetika. 1987 Aug;23(8):1421–1431. [PubMed] [Google Scholar]
- Korol A. B., Ronin Y. I., Kirzhner V. M. Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics. 1995 Jul;140(3):1137–1147. doi: 10.1093/genetics/140.3.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Z., Pinson S. R., Park W. D., Paterson A. H., Stansel J. W. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics. 1997 Feb;145(2):453–465. doi: 10.1093/genetics/145.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackinnon M. J., Weller J. I. Methodology and accuracy of estimation of quantitative trait loci parameters in a half-sib design using maximum likelihood. Genetics. 1995 Oct;141(2):755–770. doi: 10.1093/genetics/141.2.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Otto S. P., Feldman M. W. Deleterious mutations, variable epistatic interactions, and the evolution of recombination. Theor Popul Biol. 1997 Apr;51(2):134–147. doi: 10.1006/tpbi.1997.1301. [DOI] [PubMed] [Google Scholar]
- Wright F. A., Kong A. Linkage mapping in experimental crosses: the robustness of single-gene models. Genetics. 1997 May;146(1):417–425. doi: 10.1093/genetics/146.1.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu S. B., Li J. X., Xu C. G., Tan Y. F., Gao Y. J., Li X. H., Zhang Q., Saghai Maroof M. A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9226–9231. doi: 10.1073/pnas.94.17.9226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- deVicente M. C., Tanksley S. D. QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics. 1993 Jun;134(2):585–596. doi: 10.1093/genetics/134.2.585. [DOI] [PMC free article] [PubMed] [Google Scholar]