Skip to main content
Genetics logoLink to Genetics
. 1999 Jan;151(1):203–210. doi: 10.1093/genetics/151.1.203

Organization of the large mitochondrial genome in the isopod Armadillidium vulgare.

R Raimond 1, I Marcadé 1, D Bouchon 1, T Rigaud 1, J P Bossy 1, C Souty-Grosset 1
PMCID: PMC1460444  PMID: 9872960

Abstract

The mitochondrial DNA (mtDNA) in animals is generally a circular molecule of approximately 15 kb, but there are many exceptions such as linear molecules and larger ones. RFLP studies indicated that the mtDNA in the terrestrial isopod Armadillidium vulgare varied from 20 to 42 kb. This variation depended on the restriction enzyme used, and on the restriction profile generated by a given enzyme. The DNA fragments had characteristic electrophoretic behaviors. Digestions with two endonucleases always generated fewer fragments than expected; denaturation of restriction profiles reduced the size of two bands by half; densitometry indicated that a number of small fragments were present in stoichiometry, which has approximately twice the expected concentration. Finally, hybridization to a 550-bp 16S rDNA probe often revealed two copies of this gene. These results cannot be due to the genetic rearrangements generally invoked to explain large mtDNA. We propose that the large A. vulgare mtDNA is produced by the tripling of a 14-kb monomer with a singular rearrangement: one monomer is linear and the other two form a circular dimer. Densitometry suggested that these two molecular structures were present in different proportions within a single individual. The absence of mutations within the dimers also suggests that replication occurs during the monomer phase.

Full Text

The Full Text of this article is available as a PDF (422.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atlan A., Couvet D. A model simulating the dynamics of plant mitochondrial genomes. Genetics. 1993 Sep;135(1):213–222. doi: 10.1093/genetics/135.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Attardi G. Animal mitochondrial DNA: an extreme example of genetic economy. Int Rev Cytol. 1985;93:93–145. doi: 10.1016/s0074-7696(08)61373-x. [DOI] [PubMed] [Google Scholar]
  3. Boyce T. M., Zwick M. E., Aquadro C. F. Mitochondrial DNA in the bark weevils: size, structure and heteroplasmy. Genetics. 1989 Dec;123(4):825–836. doi: 10.1093/genetics/123.4.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown J. R., Beckenbach K., Beckenbach A. T., Smith M. J. Length variation, heteroplasmy and sequence divergence in the mitochondrial DNA of four species of sturgeon (Acipenser). Genetics. 1996 Feb;142(2):525–535. doi: 10.1093/genetics/142.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clary D. O., Wolstenholme D. R. The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol. 1985;22(3):252–271. doi: 10.1007/BF02099755. [DOI] [PubMed] [Google Scholar]
  6. Fuller K. M., Zouros E. Dispersed discrete length polymorphism of mitochondrial DNA in the scallop Placopecten magellanicus (Gmelin). Curr Genet. 1993;23(4):365–369. doi: 10.1007/BF00310901. [DOI] [PubMed] [Google Scholar]
  7. Gach M. H., Brown W. M. Characteristics and distribution of large tandem duplications in brook stickleback (Culaea inconstans) mitochondrial DNA. Genetics. 1997 Feb;145(2):383–394. doi: 10.1093/genetics/145.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grandjean F., Rigaud T., Raimond R., Juchault P., Souty-Grosset C. Mitochondrial DNA polymorphism and feminizing sex factors dynamics in a natural population of Armadillidium vulgare (Crustacea, Isopoda). Genetica. 1993;92(1):55–60. doi: 10.1007/BF00057507. [DOI] [PubMed] [Google Scholar]
  9. Gyllensten U., Wharton D., Josefsson A., Wilson A. C. Paternal inheritance of mitochondrial DNA in mice. Nature. 1991 Jul 18;352(6332):255–257. doi: 10.1038/352255a0. [DOI] [PubMed] [Google Scholar]
  10. Harrison R. G., Rand D. M., Wheeler W. C. Mitochondrial DNA size variation within individual crickets. Science. 1985 Jun 21;228(4706):1446–1448. doi: 10.1126/science.228.4706.1446. [DOI] [PubMed] [Google Scholar]
  11. Hyman B. C., Beck J. L., Weiss K. C. Sequence amplification and gene rearrangement in parasitic nematode mitochondrial DNA. Genetics. 1988 Nov;120(3):707–712. doi: 10.1093/genetics/120.3.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hyman B. C., Slater T. M. Recent appearance and molecular characterization of mitochondrial DNA deletions within a defined nematode pedigree. Genetics. 1990 Apr;124(4):845–853. doi: 10.1093/genetics/124.4.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kocher T. D., Thomas W. K., Meyer A., Edwards S. V., Päbo S., Villablanca F. X., Wilson A. C. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6196–6200. doi: 10.1073/pnas.86.16.6196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. La Roche J., Snyder M., Cook D. I., Fuller K., Zouros E. Molecular characterization of a repeat element causing large-scale size variation in the mitochondrial DNA of the sea scallop Placopecten magellanicus. Mol Biol Evol. 1990 Jan;7(1):45–64. doi: 10.1093/oxfordjournals.molbev.a040586. [DOI] [PubMed] [Google Scholar]
  15. McLean M., Okubo C. K., Tracey M. L. MtDNA heterogeneity in Panulirus argus. Experientia. 1983 May 15;39(5):536–538. doi: 10.1007/BF01965195. [DOI] [PubMed] [Google Scholar]
  16. Moritz C., Brown W. M. Tandem duplications in animal mitochondrial DNAs: variation in incidence and gene content among lizards. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7183–7187. doi: 10.1073/pnas.84.20.7183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Powers T. O., Platzer E. G., Hyman B. C. Large mitochondrial genome and mitochondrial DNA size polymorphism in the mosquito parasite, Romanomermis culicivorax. Curr Genet. 1986;11(1):71–77. doi: 10.1007/BF00389428. [DOI] [PubMed] [Google Scholar]
  18. Rand D. M. Endotherms, ectotherms, and mitochondrial genome-size variation. J Mol Evol. 1993 Sep;37(3):281–295. doi: 10.1007/BF00175505. [DOI] [PubMed] [Google Scholar]
  19. Rand D. M., Harrison R. G. Molecular population genetics of mtDNA size variation in crickets. Genetics. 1989 Mar;121(3):551–569. doi: 10.1093/genetics/121.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Snyder M., Fraser A. R., Laroche J., Gartner-Kepkay K. E., Zouros E. Atypical mitochondrial DNA from the deep-sea scallop Placopecten magellanicus. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7595–7599. doi: 10.1073/pnas.84.21.7595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zouros E., Freeman K. R., Ball A. O., Pogson G. H. Direct evidence for extensive paternal mitochondrial DNA inheritance in the marine mussel Mytilus. Nature. 1992 Oct 1;359(6394):412–414. doi: 10.1038/359412a0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES