Skip to main content
Genetics logoLink to Genetics
. 1999 Jan;151(1):77–85. doi: 10.1093/genetics/151.1.77

Unpredictable fitness transitions between haploid and diploid strains of the genetically loaded yeast Saccharomyces cerevisiae.

R Korona 1
PMCID: PMC1460445  PMID: 9872949

Abstract

Mutator strains of yeast were used to accumulate random point mutations. Most of the observed changes in fitness were negative and relatively small, although major decreases and increases were also present. The average fitness of haploid strains was lowered by approximately 25% due to the accumulated genetic load. The impact of the load remained basically unchanged when a homozygous diploid was compared with the haploid from which it was derived. In other experiments a heterozygous diploid was compared with the two different loaded haploids from which it was obtained. The fitness of such a loaded diploid was much less reduced and did not correlate with the average fitness of the two haploids. There was a fitness correlation, however, when genetically related heterozygous diploids were compared, indicating that the fitness effects of the new alleles were not entirely lost in the heterozygotes. It is argued here that to explain the observed pattern of fitness transitions it is necessary to invoke nonadditive genetic interactions that go beyond the uniform masking effect of wild-type alleles. Thus, the results gathered with haploids and homozygotes should be extrapolated to heterozygotes with caution when multiple loci contribute to the genetic load.

Full Text

The Full Text of this article is available as a PDF (126.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson D. I., Hughes D. Muller's ratchet decreases fitness of a DNA-based microbe. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):906–907. doi: 10.1073/pnas.93.2.906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birdsell J., Wills C. Significant competitive advantage conferred by meiosis and syngamy in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):908–912. doi: 10.1073/pnas.93.2.908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chambers S. R., Hunter N., Louis E. J., Borts R. H. The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss. Mol Cell Biol. 1996 Nov;16(11):6110–6120. doi: 10.1128/mcb.16.11.6110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Charlesworth B. Mutation-selection balance and the evolutionary advantage of sex and recombination. Genet Res. 1990 Jun;55(3):199–221. doi: 10.1017/s0016672300025532. [DOI] [PubMed] [Google Scholar]
  5. Charlesworth B. The effect of synergistic epistasis on the inbreeding load. Genet Res. 1998 Feb;71(1):85–89. doi: 10.1017/s0016672398003140. [DOI] [PubMed] [Google Scholar]
  6. Crow J. F. The high spontaneous mutation rate: is it a health risk? Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8380–8386. doi: 10.1073/pnas.94.16.8380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deng H. W., Lynch M. Inbreeding depression and inferred deleterious-mutation parameters in Daphnia. Genetics. 1997 Sep;147(1):147–155. doi: 10.1093/genetics/147.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Drake J. W., Charlesworth B., Charlesworth D., Crow J. F. Rates of spontaneous mutation. Genetics. 1998 Apr;148(4):1667–1686. doi: 10.1093/genetics/148.4.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elena S. F., Lenski R. E. Test of synergistic interactions among deleterious mutations in bacteria. Nature. 1997 Nov 27;390(6658):395–398. doi: 10.1038/37108. [DOI] [PubMed] [Google Scholar]
  10. Feldman M. W., Christiansen F. B., Brooks L. D. Evolution of recombination in a constant environment. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4838–4841. doi: 10.1073/pnas.77.8.4838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fernández J., López-Fanjul C. Spontaneous mutational variances and covariances for fitness-related traits in Drosophila melanogaster. Genetics. 1996 Jun;143(2):829–837. doi: 10.1093/genetics/143.2.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Herskowitz I., Jensen R. E. Putting the HO gene to work: practical uses for mating-type switching. Methods Enzymol. 1991;194:132–146. doi: 10.1016/0076-6879(91)94011-z. [DOI] [PubMed] [Google Scholar]
  13. Johnson R. E., Kovvali G. K., Prakash L., Prakash S. Requirement of the yeast MSH3 and MSH6 genes for MSH2-dependent genomic stability. J Biol Chem. 1996 Mar 29;271(13):7285–7288. doi: 10.1074/jbc.271.13.7285. [DOI] [PubMed] [Google Scholar]
  14. Johnston M. O., Schoen D. J. Mutation rates and dominance levels of genes affecting total fitness in two angiosperm species. Science. 1995 Jan 13;267(5195):226–229. doi: 10.1126/science.267.5195.226. [DOI] [PubMed] [Google Scholar]
  15. Kacser H., Burns J. A. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. doi: 10.1093/genetics/97.3-4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Keightley P. D., Caballero A. Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3823–3827. doi: 10.1073/pnas.94.8.3823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kibota T. T., Lynch M. Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature. 1996 Jun 20;381(6584):694–696. doi: 10.1038/381694a0. [DOI] [PubMed] [Google Scholar]
  18. Kimura M., Maruyama T. The mutational load with epistatic gene interactions in fitness. Genetics. 1966 Dec;54(6):1337–1351. doi: 10.1093/genetics/54.6.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kolodner R. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev. 1996 Jun 15;10(12):1433–1442. doi: 10.1101/gad.10.12.1433. [DOI] [PubMed] [Google Scholar]
  20. Kondrashov A. S. Deleterious mutations and the evolution of sexual reproduction. Nature. 1988 Dec 1;336(6198):435–440. doi: 10.1038/336435a0. [DOI] [PubMed] [Google Scholar]
  21. Kondrashov A. S. Selection against harmful mutations in large sexual and asexual populations. Genet Res. 1982 Dec;40(3):325–332. doi: 10.1017/s0016672300019194. [DOI] [PubMed] [Google Scholar]
  22. Kramer W., Kramer B., Williamson M. S., Fogel S. Cloning and nucleotide sequence of DNA mismatch repair gene PMS1 from Saccharomyces cerevisiae: homology of PMS1 to procaryotic MutL and HexB. J Bacteriol. 1989 Oct;171(10):5339–5346. doi: 10.1128/jb.171.10.5339-5346.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. MUKAI T. THE GENETIC STRUCTURE OF NATURAL POPULATIONS OF DROSOPHILA MELANOGASTER. I. SPONTANEOUS MUTATION RATE OF POLYGENES CONTROLLING VIABILITY. Genetics. 1964 Jul;50:1–19. doi: 10.1093/genetics/50.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Marsischky G. T., Filosi N., Kane M. F., Kolodner R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 1996 Feb 15;10(4):407–420. doi: 10.1101/gad.10.4.407. [DOI] [PubMed] [Google Scholar]
  25. McCusker J. H., Perlin D. S., Haber J. E. Pleiotropic plasma membrane ATPase mutations of Saccharomyces cerevisiae. Mol Cell Biol. 1987 Nov;7(11):4082–4088. doi: 10.1128/mcb.7.11.4082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mukai T. The Genetic Structure of Natural Populations of DROSOPHILA MELANOGASTER. VII Synergistic Interaction of Spontaneous Mutant Polygenes Controlling Viability. Genetics. 1969 Mar;61(3):749–761. doi: 10.1093/genetics/61.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Peck J. R., Eyre-Walker A. Evolutionary genetics. The muddle about mutations. Nature. 1997 May 8;387(6629):135–136. doi: 10.1038/387135a0. [DOI] [PubMed] [Google Scholar]
  28. Perrot V., Richerd S., Valéro M. Transition from haploidy to diploidy. Nature. 1991 May 23;351(6324):315–317. doi: 10.1038/351315a0. [DOI] [PubMed] [Google Scholar]
  29. West S. A., Peters A. D., Barton N. H. Testing for epistasis between deleterious mutations. Genetics. 1998 May;149(1):435–444. doi: 10.1093/genetics/149.1.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Williamson M. S., Game J. C., Fogel S. Meiotic gene conversion mutants in Saccharomyces cerevisiae. I. Isolation and characterization of pms1-1 and pms1-2. Genetics. 1985 Aug;110(4):609–646. doi: 10.1093/genetics/110.4.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. de Visser J. A., Hoekstra R. F., van den Ende H. An experimental test for synergistic epistasis and its application in Chlamydomonas. Genetics. 1997 Mar;145(3):815–819. doi: 10.1093/genetics/145.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES