Skip to main content
Genetics logoLink to Genetics
. 1999 Jan;151(1):107–117. doi: 10.1093/genetics/151.1.107

Mutational activation of a Galphai causes uncontrolled proliferation of aerial hyphae and increased sensitivity to heat and oxidative stress in Neurospora crassa.

Q Yang 1, K A Borkovich 1
PMCID: PMC1460449  PMID: 9872952

Abstract

Heterotrimeric G proteins, consisting of alpha, beta, and gamma subunits, transduce environmental signals through coupling to plasma membrane-localized receptors. We previously reported that the filamentous fungus Neurospora crassa possesses a Galpha protein, GNA-1, that is a member of the Galphai superfamily. Deletion of gna-1 leads to defects in apical extension, differentiation of asexual spores, sensitivity to hyperosmotic media, and female fertility. In addition, Deltagna-1 strains have lower intracellular cAMP levels under conditions that promote morphological abnormalities. To further define the function of GNA-1 in signal transduction in N. crassa, we examined properties of strains with mutationally activated gna-1 alleles (R178C or Q204L) as the only source of GNA-1 protein. These mutations are predicted to inhibit the GTPase activity of GNA-1 and lead to constitutive signaling. In the sexual cycle, gna-1(R178C) and gna-1(Q204L) strains are female-fertile, but produce fewer and larger perithecia than wild type. During asexual development, gna-1(R178C) and gna-1(Q204L) strains elaborate abundant, long aerial hyphae, produce less conidia, and possess lower levels of carotenoid pigments in comparison to wild-type controls. Furthermore, gna-1(R178C) and gna-1(Q204L) strains are more sensitive to heat shock and exposure to hydrogen peroxide than wild-type strains, while Deltagna-1 mutants are more resistant. In contrast to Deltagna-1 mutants, gna-1(R178C) and gna-1(Q204L) strains have higher steady-state levels of cAMP than wild type. The results suggest that GNA-1 possesses several Gbetagamma-independent functions in N. crassa. We propose that GNA-1 mediates signal transduction pathway(s) that regulate aerial hyphae development and sensitivity to heat and oxidative stresses, possibly through modulation of cAMP levels.

Full Text

The Full Text of this article is available as a PDF (303.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong G. A., Hearst J. E. Carotenoids 2: Genetics and molecular biology of carotenoid pigment biosynthesis. FASEB J. 1996 Feb;10(2):228–237. doi: 10.1096/fasebj.10.2.8641556. [DOI] [PubMed] [Google Scholar]
  2. Beltman J., Sonnenburg W. K., Beavo J. A. The role of protein phosphorylation in the regulation of cyclic nucleotide phosphodiesterases. Mol Cell Biochem. 1993 Nov;127-128:239–253. doi: 10.1007/BF01076775. [DOI] [PubMed] [Google Scholar]
  3. Birnbaumer L. Receptor-to-effector signaling through G proteins: roles for beta gamma dimers as well as alpha subunits. Cell. 1992 Dec 24;71(7):1069–1072. doi: 10.1016/s0092-8674(05)80056-x. [DOI] [PubMed] [Google Scholar]
  4. Borkovich K. A., Farrelly F. W., Finkelstein D. B., Taulien J., Lindquist S. hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol Cell Biol. 1989 Sep;9(9):3919–3930. doi: 10.1128/mcb.9.9.3919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brewster J. L., de Valoir T., Dwyer N. D., Winter E., Gustin M. C. An osmosensing signal transduction pathway in yeast. Science. 1993 Mar 19;259(5102):1760–1763. doi: 10.1126/science.7681220. [DOI] [PubMed] [Google Scholar]
  6. Brown B. L., Albano J. D., Ekins R. P., Sgherzi A. M. A simple and sensitive saturation assay method for the measurement of adenosine 3':5'-cyclic monophosphate. Biochem J. 1971 Feb;121(3):561–562. doi: 10.1042/bj1210561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bruno K. S., Aramayo R., Minke P. F., Metzenberg R. L., Plamann M. Loss of growth polarity and mislocalization of septa in a Neurospora mutant altered in the regulatory subunit of cAMP-dependent protein kinase. EMBO J. 1996 Nov 1;15(21):5772–5782. [PMC free article] [PubMed] [Google Scholar]
  8. Burns F., Zhao A. Z., Beavo J. A. Cyclic nucleotide phosphodiesterases: gene complexity, regulation by phosphorylation, and physiological implications. Adv Pharmacol. 1996;36:29–48. doi: 10.1016/s1054-3589(08)60575-x. [DOI] [PubMed] [Google Scholar]
  9. Case M. E., Schweizer M., Kushner S. R., Giles N. H. Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5259–5263. doi: 10.1073/pnas.76.10.5259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chary P., Dillon D., Schroeder A. L., Natvig D. O. Superoxide dismutase (sod-1) null mutants of Neurospora crassa: oxidative stress sensitivity, spontaneous mutation rate and response to mutagens. Genetics. 1994 Jul;137(3):723–730. doi: 10.1093/genetics/137.3.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chary P., Natvig D. O. Evidence for three differentially regulated catalase genes in Neurospora crassa: effects of oxidative stress, heat shock, and development. J Bacteriol. 1989 May;171(5):2646–2652. doi: 10.1128/jb.171.5.2646-2652.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Coleman D. E., Berghuis A. M., Lee E., Linder M. E., Gilman A. G., Sprang S. R. Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis. Science. 1994 Sep 2;265(5177):1405–1412. doi: 10.1126/science.8073283. [DOI] [PubMed] [Google Scholar]
  13. Cruz A. K., Terenzi H. F., Jorge J. A., Terenzi H. F. Cyclic AMP-dependent, constitutive thermotolerance in the adenylate cyclase-deficient cr-1 (crisp) mutant of Neurospora crassa. Curr Genet. 1988 May;13(5):451–454. doi: 10.1007/BF00365668. [DOI] [PubMed] [Google Scholar]
  14. Fracella F., Scholle C., Kallies A., Häfker T., Schröder T., Rensing L. Differential HSC70 expression during asexual development of Neurospora crassa. Microbiology. 1997 Nov;143(Pt 11):3615–3624. doi: 10.1099/00221287-143-11-3615. [DOI] [PubMed] [Google Scholar]
  15. Graziano M. P., Gilman A. G. Synthesis in Escherichia coli of GTPase-deficient mutants of Gs alpha. J Biol Chem. 1989 Sep 15;264(26):15475–15482. [PubMed] [Google Scholar]
  16. Gupta S. K., Gallego C., Lowndes J. M., Pleiman C. M., Sable C., Eisfelder B. J., Johnson G. L. Analysis of the fibroblast transformation potential of GTPase-deficient gip2 oncogenes. Mol Cell Biol. 1992 Jan;12(1):190–197. doi: 10.1128/mcb.12.1.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hansberg W., de Groot H., Sies H. Reactive oxygen species associated with cell differentiation in Neurospora crassa. Free Radic Biol Med. 1993 Mar;14(3):287–293. doi: 10.1016/0891-5849(93)90025-p. [DOI] [PubMed] [Google Scholar]
  18. Hudson T. H., Roeber J. F., Johnson G. L. Conformational changes of adenylate cyclase regulatory proteins mediated by guanine nucleotides. J Biol Chem. 1981 Feb 10;256(3):1459–1465. [PubMed] [Google Scholar]
  19. Häfker T., Techel D., Steier G., Rensing L. Differential expression of glucose-regulated (grp78) and heat-shock-inducible (hsp70) genes during asexual development of Neurospora crassa. Microbiology. 1998 Jan;144(Pt 1):37–43. doi: 10.1099/00221287-144-1-37. [DOI] [PubMed] [Google Scholar]
  20. Ivey F. D., Hodge P. N., Turner G. E., Borkovich K. A. The G alpha i homologue gna-1 controls multiple differentiation pathways in Neurospora crassa. Mol Biol Cell. 1996 Aug;7(8):1283–1297. doi: 10.1091/mbc.7.8.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Johnson G. L., Gardner A. M., Lange-Carter C., Qian N. X., Russell M., Winitz S. How does the G protein, Gi2, transduce mitogenic signals? J Cell Biochem. 1994 Apr;54(4):415–422. doi: 10.1002/jcb.240540408. [DOI] [PubMed] [Google Scholar]
  22. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  23. Kurjan J. Pheromone response in yeast. Annu Rev Biochem. 1992;61:1097–1129. doi: 10.1146/annurev.bi.61.070192.005313. [DOI] [PubMed] [Google Scholar]
  24. Mager W. H., De Kruijff A. J. Stress-induced transcriptional activation. Microbiol Rev. 1995 Sep;59(3):506–531. doi: 10.1128/mr.59.3.506-531.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marchler G., Schüller C., Adam G., Ruis H. A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J. 1993 May;12(5):1997–2003. doi: 10.1002/j.1460-2075.1993.tb05849.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moore M. M., Breedveld M. W., Autor A. P. The role of carotenoids in preventing oxidative damage in the pigmented yeast, Rhodotorula mucilaginosa. Arch Biochem Biophys. 1989 May 1;270(2):419–431. doi: 10.1016/0003-9861(89)90524-9. [DOI] [PubMed] [Google Scholar]
  27. Murayama T., Fujisawa Y., Okano Y. A suppressor mutation which suppresses adenylyl cyclase mutations in Neurospora crassa. Exp Mycol. 1995 Dec;19(4):320–323. doi: 10.1006/emyc.1995.1039. [DOI] [PubMed] [Google Scholar]
  28. Paietta J., Sargent M. L. Photoreception in Neurospora crassa: correlation of reduced light sensitivity with flavin deficiency. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5573–5577. doi: 10.1073/pnas.78.9.5573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Paul A., Wilson S., Belham C. M., Robinson C. J., Scott P. H., Gould G. W., Plevin R. Stress-activated protein kinases: activation, regulation and function. Cell Signal. 1997 Sep;9(6):403–410. doi: 10.1016/s0898-6568(97)00042-9. [DOI] [PubMed] [Google Scholar]
  30. Plesofsky-Vig N., Brambl R. Heat shock response of Neurospora crassa: protein synthesis and induced thermotolerance. J Bacteriol. 1985 Jun;162(3):1083–1091. doi: 10.1128/jb.162.3.1083-1091.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rau W., Mitzka-Schnabel U. Carotenoid synthesis in Neurospora crassa. Methods Enzymol. 1985;110:253–267. doi: 10.1016/s0076-6879(85)10082-0. [DOI] [PubMed] [Google Scholar]
  32. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  33. Shimizu M., Egashira T., Takahama U. Inactivation of Neurospora crassa conidia by singlet molecular oxygen generated by a photosensitized reaction. J Bacteriol. 1979 May;138(2):293–296. doi: 10.1128/jb.138.2.293-296.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Shin D. Y., Matsumoto K., Iida H., Uno I., Ishikawa T. Heat shock response of Saccharomyces cerevisiae mutants altered in cyclic AMP-dependent protein phosphorylation. Mol Cell Biol. 1987 Jan;7(1):244–250. doi: 10.1128/mcb.7.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Simon M. I., Strathmann M. P., Gautam N. Diversity of G proteins in signal transduction. Science. 1991 May 10;252(5007):802–808. doi: 10.1126/science.1902986. [DOI] [PubMed] [Google Scholar]
  36. Springer M. L. Genetic control of fungal differentiation: the three sporulation pathways of Neurospora crassa. Bioessays. 1993 Jun;15(6):365–374. doi: 10.1002/bies.950150602. [DOI] [PubMed] [Google Scholar]
  37. Terenzi H. F., Flawiá M. M., Torres H. N. A Neurospora crassa morphological mutant showing reduced adenylate cyclase activity. Biochem Biophys Res Commun. 1974 Jun 18;58(4):990–996. doi: 10.1016/s0006-291x(74)80241-x. [DOI] [PubMed] [Google Scholar]
  38. Turner G. E., Borkovich K. A. Identification of a G protein alpha subunit from Neurospora crassa that is a member of the Gi family. J Biol Chem. 1993 Jul 15;268(20):14805–14811. [PubMed] [Google Scholar]
  39. Yarden O., Plamann M., Ebbole D. J., Yanofsky C. cot-1, a gene required for hyphal elongation in Neurospora crassa, encodes a protein kinase. EMBO J. 1992 Jun;11(6):2159–2166. doi: 10.1002/j.1460-2075.1992.tb05275.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yu J. H., Wieser J., Adams T. H. The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J. 1996 Oct 1;15(19):5184–5190. [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES