Skip to main content
Genetics logoLink to Genetics
. 1999 Jan;151(1):321–330. doi: 10.1093/genetics/151.1.321

A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees.

M M Sewell 1, B K Sherman 1, D B Neale 1
PMCID: PMC1460451  PMID: 9872970

Abstract

A consensus map for loblolly pine (Pinus taeda L.) was constructed from the integration of linkage data from two unrelated three-generation outbred pedigrees. The progeny segregation data from restriction fragment length polymorphism, random amplified polymorphic DNA, and isozyme genetic markers from each pedigree were recoded to reflect the two independent populations of parental meioses, and genetic maps were constructed to represent each parent. The rate of meiotic recombination was significantly greater for males than females, as was the average estimate of genome length for males (1983.7 cM [Kosambi mapping function (K)]) and females [1339.5 cM(K)]. The integration of individual maps allows for the synthesis of genetic information from independent sources onto a single consensus map and facilitates the consolidation of linkage groups to represent the chromosomes n = 12 of loblolly pine. The resulting consensus map consists of 357 unique molecular markers and covers approximately 1300 cM(K).

Full Text

The Full Text of this article is available as a PDF (206.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennetzen J. L., Freeling M. Grasses as a single genetic system: genome composition, collinearity and compatibility. Trends Genet. 1993 Aug;9(8):259–261. doi: 10.1016/0168-9525(93)90001-x. [DOI] [PubMed] [Google Scholar]
  2. Devey M. E., Delfino-Mix A., Kinloch B. B., Jr, Neale D. B. Random amplified polymorphic DNA markers tightly linked to a gene for resistance to white pine blister rust in sugar pine. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2066–2070. doi: 10.1073/pnas.92.6.2066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Groover A., Devey M., Fiddler T., Lee J., Megraw R., Mitchel-Olds T., Sherman B., Vujcic S., Williams C., Neale D. Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine. Genetics. 1994 Dec;138(4):1293–1300. doi: 10.1093/genetics/138.4.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Helentjaris T., Weber D., Wright S. Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics. 1988 Feb;118(2):353–363. doi: 10.1093/genetics/118.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hulbert S. H., Ilott T. W., Legg E. J., Lincoln S. E., Lander E. S., Michelmore R. W. Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms. Genetics. 1988 Dec;120(4):947–958. doi: 10.1093/genetics/120.4.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kamm A., Doudrick R. L., Heslop-Harrison J. S., Schmidt T. The genomic and physical organization of Ty1-copia-like sequences as a component of large genomes in Pinus elliottii var. elliottii and other gymnosperms. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2708–2713. doi: 10.1073/pnas.93.7.2708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kinlaw C. S., Gerttula S. M., Carter M. C. Lipid transfer protein genes of loblolly pine are members of a complex gene family. Plant Mol Biol. 1994 Nov;26(4):1213–1216. doi: 10.1007/BF00040702. [DOI] [PubMed] [Google Scholar]
  8. Kvarnheden A., Tandre K., Engström P. A cdc2 homologue and closely related processed retropseudogenes from Norway spruce. Plant Mol Biol. 1995 Jan;27(2):391–403. doi: 10.1007/BF00020192. [DOI] [PubMed] [Google Scholar]
  9. Liu Y. G., Mitsukawa N., Lister C., Dean C., Whittier R. F. Isolation and mapping of a new set of 129 RFLP markers in Arabidopsis thaliana using recombinant inbred lines. Plant J. 1996 Oct;10(4):733–736. doi: 10.1046/j.1365-313x.1996.10040733.x. [DOI] [PubMed] [Google Scholar]
  10. Manly K. F. A Macintosh program for storage and analysis of experimental genetic mapping data. Mamm Genome. 1993;4(6):303–313. doi: 10.1007/BF00357089. [DOI] [PubMed] [Google Scholar]
  11. O'malley D. M., Porter S., Sederoff R. R. Purification, Characterization, and Cloning of Cinnamyl Alcohol Dehydrogenase in Loblolly Pine (Pinus taeda L.). Plant Physiol. 1992 Apr;98(4):1364–1371. doi: 10.1104/pp.98.4.1364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Perry D. J., Furnier G. R. Pinus banksiana has at least seven expressed alcohol dehydrogenase genes in two linked groups. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13020–13023. doi: 10.1073/pnas.93.23.13020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pichersky E. Nomad DNA--a model for movement and duplication of DNA sequences in plant genomes. Plant Mol Biol. 1990 Sep;15(3):437–448. doi: 10.1007/BF00019160. [DOI] [PubMed] [Google Scholar]
  14. Qi X., Stam P., Lindhout P. Comparison and integration of four barley genetic maps. Genome. 1996 Apr;39(2):379–394. doi: 10.1139/g96-049. [DOI] [PubMed] [Google Scholar]
  15. Tanksley S. D., Ganal M. W., Prince J. P., de Vicente M. C., Bonierbale M. W., Broun P., Fulton T. M., Giovannoni J. J., Grandillo S., Martin G. B. High density molecular linkage maps of the tomato and potato genomes. Genetics. 1992 Dec;132(4):1141–1160. doi: 10.1093/genetics/132.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tulsieram L. K., Glaubitz J. C., Kiss G., Carlson J. E. Single tree genetic linkage mapping in conifers using haploid DNA from megagametophytes. Biotechnology (N Y) 1992 Jun;10(6):686–690. doi: 10.1038/nbt0692-686. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES