Skip to main content
Genetics logoLink to Genetics
. 1999 Jan;151(1):251–262. doi: 10.1093/genetics/151.1.251

Are unpaired chromosomes spermicidal?: A maximum-likelihood analysis of segregation and meiotic drive in Drosophila melanogaster males deficient for the ribosomal-dna.

L G Robbins 1
PMCID: PMC1460466  PMID: 9872964

Abstract

Meiosis in Drosophila melanogaster males is achiasmate and requires special systems to ensure normal segregation. Several situations that yield frequent nondisjunction also produce high levels of chromatin-dependent sperm lethality, suggesting the possibility of a simple and direct connection between defective disjunction and defective sperm development. One hypothesis that has been offered is that pairing not only ensures disjunction, but also changes the physical state of chromosomes so that they can be packaged in sperm. Here, I present an analysis of extensive data on disjunction and sperm survival in rDNA-deficient males collected by B. McKee and D. Lindsley. This analysis demonstrates that, although nondisjunction and sperm lethality are indeed correlated, the basis of this is not the presence of unpaired chromosomes in the sperm. Chromosomes that have failed to disjoin are not themselves spermicidal.

Full Text

The Full Text of this article is available as a PDF (175.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker B. S., Carpenter A. T. Genetic analysis of sex chromosomal meiotic mutants in Drosophilia melanogaster. Genetics. 1972 Jun;71(2):255–286. doi: 10.1093/genetics/71.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dernburg A. F., Daily D. R., Yook K. J., Corbin J. A., Sedat J. W., Sullivan W. Selective loss of sperm bearing a compound chromosome in the Drosophila female. Genetics. 1996 Aug;143(4):1629–1642. doi: 10.1093/genetics/143.4.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hardy R. W., Lindsley D. L., Livak K. J., Lewis B., Siversten A. L., Joslyn G. L., Edwards J., Bonaccorsi S. Cytogenetic analysis of a segment of the Y chromosome of Drosophila melanogaster. Genetics. 1984 Aug;107(4):591–610. doi: 10.1093/genetics/107.4.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. McKee B. D., Habera L., Vrana J. A. Evidence that intergenic spacer repeats of Drosophila melanogaster rRNA genes function as X-Y pairing sites in male meiosis, and a general model for achiasmatic pairing. Genetics. 1992 Oct;132(2):529–544. doi: 10.1093/genetics/132.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. McKee B. D., Karpen G. H. Drosophila ribosomal RNA genes function as an X-Y pairing site during male meiosis. Cell. 1990 Apr 6;61(1):61–72. doi: 10.1016/0092-8674(90)90215-z. [DOI] [PubMed] [Google Scholar]
  6. McKee B. D., Wilhelm K., Merrill C., Ren X. Male sterility and meiotic drive associated with sex chromosome rearrangements in Drosophila. Role of X-Y pairing. Genetics. 1998 May;149(1):143–155. doi: 10.1093/genetics/149.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. McKee B. Sex Chromosome Meiotic Drive in DROSOPHILA MELANOGASTER Males. Genetics. 1984 Mar;106(3):403–422. doi: 10.1093/genetics/106.3.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McKee B. X-4 Translocations and Meiotic Drive in Drosophila melanogaster Males: Role of Sex Chromosome Pairing. Genetics. 1987 Jul;116(3):409–413. doi: 10.1093/genetics/116.3.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Merrill C. J., Chakravarti D., Habera L., Das S., Eisenhour L., McKee B. D. Promoter-containing ribosomal DNA fragments function as X-Y meiotic pairing sites in D. melanogaster males. Dev Genet. 1992;13(6):468–484. doi: 10.1002/dvg.1020130609. [DOI] [PubMed] [Google Scholar]
  10. Novitski E., Grace D., Strommen C. The entire compound autosomes of Drosophila melanogaster. Genetics. 1981 Jun;98(2):257–273. doi: 10.1093/genetics/98.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Novitski E., Sandler I. ARE ALL PRODUCTS OF SPERMATOGENESIS REGULARLY FUNCTIONAL? Proc Natl Acad Sci U S A. 1957 Apr 15;43(4):318–324. doi: 10.1073/pnas.43.4.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. PEACOCK W. J., ERICKSON J. SEGREGATION-DISTORTION AND REGULARLY NONFUNCTIONAL PRODUCTS OF SPERMATOGENESIS IN DROSOPHILA MELANOGASTER. Genetics. 1965 Feb;51:313–328. doi: 10.1093/genetics/51.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Palumbo G., Bonaccorsi S., Robbins L. G., Pimpinelli S. Genetic analysis of Stellate elements of Drosophila melanogaster. Genetics. 1994 Dec;138(4):1181–1197. doi: 10.1093/genetics/138.4.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Peacock W. J., Miklos G. L., Goodchild D. J. Sex chromosome meiotic drive systems in Drosophila melanogaster I. Abnormal spermatid development in males with a heterochromatin-deficient X chromosome (sc-4sc-8). Genetics. 1975 Apr;79(4):613–634. doi: 10.1093/genetics/79.4.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Robbins L. G., Palumbo G., Bonaccorsi S., Pimpinelli S. Measuring meiotic drive. Genetics. 1996 Feb;142(2):645–647. doi: 10.1093/genetics/142.2.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sandler L, Braver G. The Meiotic Loss of Unpaired Chromosomes in Drosophila Melanogaster. Genetics. 1954 May;39(3):365–377. doi: 10.1093/genetics/39.3.365. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES