Skip to main content
Genetics logoLink to Genetics
. 1999 Jan;151(1):151–161. doi: 10.1093/genetics/151.1.151

The Amylase gene cluster on the evolving sex chromosomes of Drosophila miranda.

S Steinemann 1, M Steinemann 1
PMCID: PMC1460469  PMID: 9872956

Abstract

On the basis of chromosomal homology, the Amylase gene cluster in Drosophila miranda must be located on the secondary sex chromosome pair, neo-X (X2) and neo-Y, but is autosomally inherited in all other Drosophila species. Genetic evidence indicates no active amylase on the neo-Y chromosome and the X2-chromosomal locus already shows dosage compensation. Several lines of evidence strongly suggest that the Amy gene cluster has been lost already from the evolving neo-Y chromosome. This finding shows that a relatively new neo-Y chromosome can start to lose genes and hence gradually lose homology with the neo-X. The X2-chromosomal Amy1 is intact and Amy2 contains a complete coding sequence, but has a deletion in the 3'-flanking region. Amy3 is structurally eroded and hampered by missing regulatory motifs. Functional analysis of the X2-chromosomal Amy1 and Amy2 regions from D. miranda in transgenic D. melanogaster flies reveals ectopic AMY1 expression. AMY1 shows the same electrophoretic mobility as the single amylase band in D. miranda, while ectopic AMY2 expression is characterized by a different mobility. Therefore, only the Amy1 gene of the resident Amy cluster remains functional and hence Amy1 is the dosage compensated gene.

Full Text

The Full Text of this article is available as a PDF (299.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bahn E. Cytogenetical localization of the amylase region in Drosophila melanogaster by means of translocations. Hereditas. 1972;67(1):75–78. doi: 10.1111/j.1601-5223.1971.tb02360.x. [DOI] [PubMed] [Google Scholar]
  3. Bahn E. Position-effect variegation for an isoamylase in Drosophila melanogaster. Hereditas. 1972;67(1):79–82. doi: 10.1111/j.1601-5223.1971.tb02361.x. [DOI] [PubMed] [Google Scholar]
  4. Barrio E., Latorre A., Moya A., Ayala F. J. Phylogenetic reconstruction of the Drosophila obscura group, on the basis of mitochondrial DNA. Mol Biol Evol. 1992 Jul;9(4):621–635. doi: 10.1093/oxfordjournals.molbev.a040749. [DOI] [PubMed] [Google Scholar]
  5. Benkel B. F., Abukashawa S., Boer P. H., Hickey D. A. Molecular cloning of DNA complementary to Drosophila melanogaster alpha-amylase mRNA. Genome. 1987 Jun;29(3):510–515. doi: 10.1139/g87-087. [DOI] [PubMed] [Google Scholar]
  6. Boer P. H., Hickey D. A. The alpha-amylase gene in Drosophila melanogaster: nucleotide sequence, gene structure and expression motifs. Nucleic Acids Res. 1986 Nov 11;14(21):8399–8411. doi: 10.1093/nar/14.21.8399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bone J. R., Kuroda M. I. Dosage compensation regulatory proteins and the evolution of sex chromosomes in Drosophila. Genetics. 1996 Oct;144(2):705–713. doi: 10.1093/genetics/144.2.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Charlesworth B., Charlesworth D., Hnilicka J., Yu A., Guttman D. S. Lack of degeneration of loci on the neo-Y chromosome of Drosophila americana americana. Genetics. 1997 Apr;145(4):989–1002. doi: 10.1093/genetics/145.4.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  10. Da Lage J. L., Renard E., Chartois F., Lemeunier F., Cariou M. L. Amyrel, a paralogous gene of the amylase gene family in Drosophila melanogaster and the Sophophora subgenus. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6848–6853. doi: 10.1073/pnas.95.12.6848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Da Lage J. L., Wegnez M., Cariou M. L. Distribution and evolution of introns in Drosophila amylase genes. J Mol Evol. 1996 Oct;43(4):334–347. doi: 10.1007/BF02339008. [DOI] [PubMed] [Google Scholar]
  12. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dobzhansky T. Drosophila Miranda, a New Species. Genetics. 1935 Jul;20(4):377–391. doi: 10.1093/genetics/20.4.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gemmill R. M., Levy J. N., Doane W. W. Molecular cloning of alpha-amylase genes from Drosophila melanogaster. I. Clone isolation by use of a mouse probe. Genetics. 1985 Jun;110(2):299–312. doi: 10.1093/genetics/110.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Graves J. A. The origin and function of the mammalian Y chromosome and Y-borne genes--an evolving understanding. Bioessays. 1995 Apr;17(4):311–320. doi: 10.1002/bies.950170407. [DOI] [PubMed] [Google Scholar]
  16. Guttman D. S., Charlesworth D. An X-linked gene with a degenerate Y-linked homologue in a dioecious plant. Nature. 1998 May 21;393(6682):263–266. doi: 10.1038/30492. [DOI] [PubMed] [Google Scholar]
  17. Henikoff S., Matzke M. A. Exploring and explaining epigenetic effects. Trends Genet. 1997 Aug;13(8):293–295. doi: 10.1016/s0168-9525(97)01219-5. [DOI] [PubMed] [Google Scholar]
  18. Kastritsis C. D., Crumpacker D. W. Gene arrangements in the third chromosome of Drosophila pseudoobscura. I. Configurations with tester chromosomes. J Hered. 1966 Sep-Oct;57(5):151–158. doi: 10.1093/oxfordjournals.jhered.a107495. [DOI] [PubMed] [Google Scholar]
  19. Kraemer C., Schmidt E. R. The sex determining region of Chironomus thummi is associated with highly repetitive DNA and transposable elements. Chromosoma. 1993 Sep;102(8):553–562. doi: 10.1007/BF00368348. [DOI] [PubMed] [Google Scholar]
  20. Lucchesi J. C. The evolution of heteromorphic sex chromosomes. Bioessays. 1994 Feb;16(2):81–83. doi: 10.1002/bies.950160202. [DOI] [PubMed] [Google Scholar]
  21. Macknight R H. The Sex-Determining Mechanism of Drosophila Miranda. Genetics. 1939 Mar;24(2):180–201. doi: 10.1093/genetics/24.2.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Marín I., Franke A., Bashaw G. J., Baker B. S. The dosage compensation system of Drosophila is co-opted by newly evolved X chromosomes. Nature. 1996 Sep 12;383(6596):160–163. doi: 10.1038/383160a0. [DOI] [PubMed] [Google Scholar]
  23. Norman R. A., Doane W. W. Dosage compensation and dietary glucose repression of larval amylase activity in Drosophila miranda. Biochem Genet. 1990 Dec;28(11-12):601–613. doi: 10.1007/BF00553953. [DOI] [PubMed] [Google Scholar]
  24. Norman R. A., Prakash S. Variation in activities of amylase allozymes associated with chromosome inversions in Drosophila pseudoobscura, D. persimilis and D. miranda. Genetics. 1980 May;95(1):187–209. doi: 10.1093/genetics/95.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Okuyama E., Tachida H., Yamazaki T. Molecular analysis of the intergenic region of the duplicated Amy genes of Drosophila melanogaster and Drosophila teissieri. J Mol Evol. 1997 Jul;45(1):32–42. doi: 10.1007/pl00006196. [DOI] [PubMed] [Google Scholar]
  26. Popadić A., Anderson W. W. Evidence for gene conversion in the amylase multigene family of Drosophila pseudoobscura. Mol Biol Evol. 1995 Jul;12(4):564–572. doi: 10.1093/oxfordjournals.molbev.a040236. [DOI] [PubMed] [Google Scholar]
  27. Popadić A., Norman R. A., Doanet W. W., Anderson W. W. The evolutionary history of the amylase multigene family in Drosophila pseudoobscura. Mol Biol Evol. 1996 Jul;13(6):883–888. doi: 10.1093/oxfordjournals.molbev.a025648. [DOI] [PubMed] [Google Scholar]
  28. Schibler U., Pittet A. C., Young R. A., Hagenbüchle O., Tosi M., Gellman S., Wellauer P. K. The mouse alpha-amylase multigene family. Sequence organization of members expressed in the pancreas, salivary gland and liver. J Mol Biol. 1982 Mar 5;155(3):247–266. doi: 10.1016/0022-2836(82)90004-3. [DOI] [PubMed] [Google Scholar]
  29. Schibler U., Tosi M., Pittet A. C., Fabiani L., Wellauer P. K. Tissue-specific expression of mouse alpha-amylase genes. J Mol Biol. 1980 Sep 5;142(1):93–116. doi: 10.1016/0022-2836(80)90208-9. [DOI] [PubMed] [Google Scholar]
  30. Shibata H., Yamazaki T. Molecular evolution of the duplicated Amy locus in the Drosophila melanogaster species subgroup: concerted evolution only in the coding region and an excess of nonsynonymous substitutions in speciation. Genetics. 1995 Sep;141(1):223–236. doi: 10.1093/genetics/141.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Steinemann M., Steinemann S. Degenerating Y chromosome of Drosophila miranda: a trap for retrotransposons. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7591–7595. doi: 10.1073/pnas.89.16.7591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Steinemann M., Steinemann S. Enigma of Y chromosome degeneration: neo-Y and neo-X chromosomes of Drosophila miranda a model for sex chromosome evolution. Genetica. 1998;102-103(1-6):409–420. [PubMed] [Google Scholar]
  33. Steinemann M., Steinemann S., Lottspeich F. How Y chromosomes become genetically inert. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5737–5741. doi: 10.1073/pnas.90.12.5737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Steinemann M., Steinemann S., Turner B. M. Evolution of dosage compensation. Chromosome Res. 1996 Apr;4(3):185–190. doi: 10.1007/BF02254957. [DOI] [PubMed] [Google Scholar]
  35. Strobel E., Pelling C., Arnheim N. Incomplete dosage compensation in an evolving Drosophila sex chromosome. Proc Natl Acad Sci U S A. 1978 Feb;75(2):931–935. doi: 10.1073/pnas.75.2.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sturtevant A. H., Dobzhansky T. Inversions in the Third Chromosome of Wild Races of Drosophila Pseudoobscura, and Their Use in the Study of the History of the Species. Proc Natl Acad Sci U S A. 1936 Jul;22(7):448–450. doi: 10.1073/pnas.22.7.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Traut W. Sex determination in the fly Megaselia scalaris, a model system for primary steps of sex chromosome evolution. Genetics. 1994 Mar;136(3):1097–1104. doi: 10.1093/genetics/136.3.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES