Skip to main content
Genetics logoLink to Genetics
. 1999 Jan;151(1):163–175. doi: 10.1093/genetics/151.1.163

The haplolethal region at the 16F gene cluster of Drosophila melanogaster: structure and function.

A Prado 1, I Canal 1, A Ferrús 1
PMCID: PMC1460474  PMID: 9872957

Abstract

Extensive aneuploid analyses had shown the existence of a few haplolethal (HL) regions and one triplolethal region in the genome of Drosophila melanogaster. Since then, only two haplolethals, 22F1-2 and 16F, have been directly linked to identified genes, dpp and wupA, respectively. However, with the possible exception of dpp, the actual bases for this dosage sensitivity remain unknown. We have generated and characterized dominant-lethal mutations and chromosomal rearrangements in 16F and studied them in relation to the genes in the region. This region extends along 100 kb and includes at least 14 genes. The normal HL function depends on the integrity of a critical 4-kb window of mostly noncoding sequences within the wupA transcription unit that encodes the muscle protein troponin I (TNI). All dominant lethals are breakpoints within that window, which prevent the functional expression of TNI and other adjacent genes in the proximal direction. However, independent mutations in these genes result in recessive lethal phenotypes only. We propose that the HL at 16F represents a long-range cis regulatory region that acts upon a number of functionally related genes whose combined haploidy would yield the dominant-lethal effect.

Full Text

The Full Text of this article is available as a PDF (407.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Baker B. S., Gorman M., Marín I. Dosage compensation in Drosophila. Annu Rev Genet. 1994;28:491–521. doi: 10.1146/annurev.ge.28.120194.002423. [DOI] [PubMed] [Google Scholar]
  3. Barbas J. A., Galceran J., Krah-Jentgens I., de la Pompa J. L., Canal I., Pongs O., Ferrús A. Troponin I is encoded in the haplolethal region of the Shaker gene complex of Drosophila. Genes Dev. 1991 Jan;5(1):132–140. doi: 10.1101/gad.5.1.132. [DOI] [PubMed] [Google Scholar]
  4. Barbas J. A., Galceran J., Torroja L., Prado A., Ferrús A. Abnormal muscle development in the heldup3 mutant of Drosophila melanogaster is caused by a splicing defect affecting selected troponin I isoforms. Mol Cell Biol. 1993 Mar;13(3):1433–1439. doi: 10.1128/mcb.13.3.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baumann A., Krah-Jentgens I., Müller R., Müller-Holtkamp F., Seidel R., Kecskemethy N., Casal J., Ferrus A., Pongs O. Molecular organization of the maternal effect region of the Shaker complex of Drosophila: characterization of an I(A) channel transcript with homology to vertebrate Na channel. EMBO J. 1987 Nov;6(11):3419–3429. doi: 10.1002/j.1460-2075.1987.tb02665.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beall C. J., Fyrberg E. Muscle abnormalities in Drosophila melanogaster heldup mutants are caused by missing or aberrant troponin-I isoforms. J Cell Biol. 1991 Sep;114(5):941–951. doi: 10.1083/jcb.114.5.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bione S., Tamanini F., Maestrini E., Tribioli C., Poustka A., Torri G., Rivella S., Toniolo D. Transcriptional organization of a 450-kb region of the human X chromosome in Xq28. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10977–10981. doi: 10.1073/pnas.90.23.10977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Breen T. R., Lucchesi J. C. Analysis of the dosage compensation of a specific transcript in Drosophila melanogaster. Genetics. 1986 Mar;112(3):483–491. doi: 10.1093/genetics/112.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen C. N., Malone T., Beckendorf S. K., Davis R. L. At least two genes reside within a large intron of the dunce gene of Drosophila. Nature. 1987 Oct 22;329(6141):721–724. doi: 10.1038/329721a0. [DOI] [PubMed] [Google Scholar]
  10. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  11. Decker C. J., Parker R. Diversity of cytoplasmic functions for the 3' untranslated region of eukaryotic transcripts. Curr Opin Cell Biol. 1995 Jun;7(3):386–392. doi: 10.1016/0955-0674(95)80094-8. [DOI] [PubMed] [Google Scholar]
  12. Dernburg A. F., Broman K. W., Fung J. C., Marshall W. F., Philips J., Agard D. A., Sedat J. W. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell. 1996 May 31;85(5):745–759. doi: 10.1016/s0092-8674(00)81240-4. [DOI] [PubMed] [Google Scholar]
  13. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dorer D. R., Cadden M. A., Gordesky-Gold B., Harries G., Christensen A. C. Suppression of a lethal trisomic phenotype in Drosophila melanogaster by increased dosage of an unlinked locus. Genetics. 1993 May;134(1):243–249. doi: 10.1093/genetics/134.1.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dorer D. R., Christensen A. C. The unusual spectrum of mutations induced by hybrid dysgenesis at the Triplo-lethal locus of Drosophila melanogaster. Genetics. 1990 Aug;125(4):795–801. doi: 10.1093/genetics/125.4.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dorer D. R., Ezekiel D. H., Christensen A. C. The Triplo-lethal locus of Drosophila: reexamination of mutants and discovery of a second-site suppressor. Genetics. 1995 Nov;141(3):1037–1042. doi: 10.1093/genetics/141.3.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Eberl D. F., Perkins L. A., Engelstein M., Hilliker A. J., Perrimon N. Genetic and developmental analysis of polytene section 17 of the X chromosome of Drosophila melanogaster. Genetics. 1992 Mar;130(3):569–583. doi: 10.1093/genetics/130.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Edwards K. A., Chang X. J., Kiehart D. P. Essential light chain of Drosophila nonmuscle myosin II. J Muscle Res Cell Motil. 1995 Oct;16(5):491–498. doi: 10.1007/BF00126433. [DOI] [PubMed] [Google Scholar]
  19. Epstein H. F., Bernstein S. I. Genetic approaches to understanding muscle development. Dev Biol. 1992 Dec;154(2):231–244. doi: 10.1016/0012-1606(92)90064-n. [DOI] [PubMed] [Google Scholar]
  20. Ferrús A., Llamazares S., de la Pompa J. L., Tanouye M. A., Pongs O. Genetic analysis of the Shaker gene complex of Drosophila melanogaster. Genetics. 1990 Jun;125(2):383–398. doi: 10.1093/genetics/125.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hiraoka Y., Dernburg A. F., Parmelee S. J., Rykowski M. C., Agard D. A., Sedat J. W. The onset of homologous chromosome pairing during Drosophila melanogaster embryogenesis. J Cell Biol. 1993 Feb;120(3):591–600. doi: 10.1083/jcb.120.3.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Homyk T., Jr, Emerson C. P., Jr Functional interactions between unlinked muscle genes within haploinsufficient regions of the Drosophila genome. Genetics. 1988 May;119(1):105–121. doi: 10.1093/genetics/119.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hong C. S., Ganetzky B. Molecular characterization of neurally expressing genes in the para sodium channel gene cluster of drosophila. Genetics. 1996 Mar;142(3):879–892. doi: 10.1093/genetics/142.3.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kamb A., Iverson L. E., Tanouye M. A. Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel. Cell. 1987 Jul 31;50(3):405–413. doi: 10.1016/0092-8674(87)90494-6. [DOI] [PubMed] [Google Scholar]
  25. Keppy D. O., Denell R. E. A mutational analysis of the triplo-lethal region of Drosophila melanogaster. Genetics. 1979 Mar;91(3):421–441. doi: 10.1093/genetics/91.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Klemenz R., Weber U., Gehring W. J. The white gene as a marker in a new P-element vector for gene transfer in Drosophila. Nucleic Acids Res. 1987 May 26;15(10):3947–3959. doi: 10.1093/nar/15.10.3947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kuroda M. I., Kernan M. J., Kreber R., Ganetzky B., Baker B. S. The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell. 1991 Sep 6;66(5):935–947. doi: 10.1016/0092-8674(91)90439-6. [DOI] [PubMed] [Google Scholar]
  28. L'Ecuyer T. J., Tompach P. C., Morris E., Fulton A. B. Transdifferentiation of chicken embryonic cells into muscle cells by the 3' untranslated region of muscle tropomyosin. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7520–7524. doi: 10.1073/pnas.92.16.7520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lefevre G., Johnson T. K. Evidence for a Sex-Linked Haplo-Inviable Locus in the Cut-Singed Region of DROSOPHILA MELANOGASTER. Genetics. 1973 Aug;74(4):633–645. doi: 10.1093/genetics/74.4.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lifschytz E., Green M. M. Genetic identification of dominant overproducing mutations: the Beadex gene. Mol Gen Genet. 1979 Mar 20;171(2):153–159. doi: 10.1007/BF00270001. [DOI] [PubMed] [Google Scholar]
  31. Lin H., Yutzey K. E., Konieczny S. F. Muscle-specific expression of the troponin I gene requires interactions between helix-loop-helix muscle regulatory factors and ubiquitous transcription factors. Mol Cell Biol. 1991 Jan;11(1):267–280. doi: 10.1128/mcb.11.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Maleszka R., de Couet H. G., Miklos G. L. Data transferability from model organisms to human beings: insights from the functional genomics of the flightless region of Drosophila. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3731–3736. doi: 10.1073/pnas.95.7.3731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nikovits W., Jr, Mar J. H., Ordahl C. P. Muscle-specific activity of the skeletal troponin I promoter requires interaction between upstream regulatory sequences and elements contained within the first transcribed exon. Mol Cell Biol. 1990 Jul;10(7):3468–3482. doi: 10.1128/mcb.10.7.3468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Padgett R. W., St Johnston R. D., Gelbart W. M. A transcript from a Drosophila pattern gene predicts a protein homologous to the transforming growth factor-beta family. Nature. 1987 Jan 1;325(6099):81–84. doi: 10.1038/325081a0. [DOI] [PubMed] [Google Scholar]
  36. Pongs O., Lindemeier J., Zhu X. R., Theil T., Engelkamp D., Krah-Jentgens I., Lambrecht H. G., Koch K. W., Schwemer J., Rivosecchi R. Frequenin--a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron. 1993 Jul;11(1):15–28. doi: 10.1016/0896-6273(93)90267-u. [DOI] [PubMed] [Google Scholar]
  37. Poulain C., Ferrús A., Mallart A. Modulation of type A K+ current in Drosophila larval muscle by internal Ca2+; effects of the overexpression of frequenin. Pflugers Arch. 1994 May;427(1-2):71–79. doi: 10.1007/BF00585944. [DOI] [PubMed] [Google Scholar]
  38. Prado A., Canal I., Barbas J. A., Molloy J., Ferrús A. Functional recovery of troponin I in a Drosophila heldup mutant after a second site mutation. Mol Biol Cell. 1995 Nov;6(11):1433–1441. doi: 10.1091/mbc.6.11.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Reuter G., Spierer P. Position effect variegation and chromatin proteins. Bioessays. 1992 Sep;14(9):605–612. doi: 10.1002/bies.950140907. [DOI] [PubMed] [Google Scholar]
  40. Rivier D. H., Pillus L. Silencing speaks up. Cell. 1994 Mar 25;76(6):963–966. doi: 10.1016/0092-8674(94)90373-5. [DOI] [PubMed] [Google Scholar]
  41. Roehrdanz R. L., Lucchesi J. C. Mutational Events in the Triplo- and Haplo-Lethal Region (83de) of the DROSOPHILA MELANOGASTER Genome. Genetics. 1980 Jun;95(2):355–366. doi: 10.1093/genetics/95.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Spradling A. C., Rubin G. M. Transposition of cloned P elements into Drosophila germ line chromosomes. Science. 1982 Oct 22;218(4570):341–347. doi: 10.1126/science.6289435. [DOI] [PubMed] [Google Scholar]
  43. St Johnston R. D., Hoffmann F. M., Blackman R. K., Segal D., Grimaila R., Padgett R. W., Irick H. A., Gelbart W. M. Molecular organization of the decapentaplegic gene in Drosophila melanogaster. Genes Dev. 1990 Jul;4(7):1114–1127. doi: 10.1101/gad.4.7.1114. [DOI] [PubMed] [Google Scholar]
  44. Stossel T. P. On the crawling of animal cells. Science. 1993 May 21;260(5111):1086–1094. doi: 10.1126/science.8493552. [DOI] [PubMed] [Google Scholar]
  45. Tanouye M. A., Ferrus A., Fujita S. C. Abnormal action potentials associated with the Shaker complex locus of Drosophila. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6548–6552. doi: 10.1073/pnas.78.10.6548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tejedor F., Zhu X. R., Kaltenbach E., Ackermann A., Baumann A., Canal I., Heisenberg M., Fischbach K. F., Pongs O. minibrain: a new protein kinase family involved in postembryonic neurogenesis in Drosophila. Neuron. 1995 Feb;14(2):287–301. doi: 10.1016/0896-6273(95)90286-4. [DOI] [PubMed] [Google Scholar]
  47. Tempel B. L., Papazian D. M., Schwarz T. L., Jan Y. N., Jan L. Y. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science. 1987 Aug 14;237(4816):770–775. doi: 10.1126/science.2441471. [DOI] [PubMed] [Google Scholar]
  48. Thomas G. H., Newbern E. C., Korte C. C., Bales M. A., Muse S. V., Clark A. G., Kiehart D. P. Intragenic duplication and divergence in the spectrin superfamily of proteins. Mol Biol Evol. 1997 Dec;14(12):1285–1295. doi: 10.1093/oxfordjournals.molbev.a025738. [DOI] [PubMed] [Google Scholar]
  49. Tycowski K. T., Shu M. D., Steitz J. A. A mammalian gene with introns instead of exons generating stable RNA products. Nature. 1996 Feb 1;379(6564):464–466. doi: 10.1038/379464a0. [DOI] [PubMed] [Google Scholar]
  50. Wharton K., Ray R. P., Findley S. D., Duncan H. E., Gelbart W. M. Molecular lesions associated with alleles of decapentaplegic identify residues necessary for TGF-beta/BMP cell signaling in Drosophila melanogaster. Genetics. 1996 Feb;142(2):493–505. doi: 10.1093/genetics/142.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Williamson R. M., Hetherington J., Jackson J. H. Detection of fundamental principles and a level of order for large-scale gene clustering on the Escherichia coli chromosome. J Mol Evol. 1993 Apr;36(4):347–360. doi: 10.1007/BF00182182. [DOI] [PubMed] [Google Scholar]
  52. Wilson C., Bellen H. J., Gehring W. J. Position effects on eukaryotic gene expression. Annu Rev Cell Biol. 1990;6:679–714. doi: 10.1146/annurev.cb.06.110190.003335. [DOI] [PubMed] [Google Scholar]
  53. Wright T. R. The Wilhelmine E. Key 1992 Invitational lecture. Phenotypic analysis of the Dopa decarboxylase gene cluster mutants in Drosophila melanogaster. J Hered. 1996 May-Jun;87(3):175–190. doi: 10.1093/oxfordjournals.jhered.a022983. [DOI] [PubMed] [Google Scholar]
  54. Young P. E., Richman A. M., Ketchum A. S., Kiehart D. P. Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. Genes Dev. 1993 Jan;7(1):29–41. doi: 10.1101/gad.7.1.29. [DOI] [PubMed] [Google Scholar]
  55. Yutzey K. E., Kline R. L., Konieczny S. F. An internal regulatory element controls troponin I gene expression. Mol Cell Biol. 1989 Apr;9(4):1397–1405. doi: 10.1128/mcb.9.4.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Yutzey K. E., Konieczny S. F. Different E-box regulatory sequences are functionally distinct when placed within the context of the troponin I enhancer. Nucleic Acids Res. 1992 Oct 11;20(19):5105–5113. doi: 10.1093/nar/20.19.5105. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES