Skip to main content
Genetics logoLink to Genetics
. 1999 Feb;151(2):653–665. doi: 10.1093/genetics/151.2.653

Retrotransposable elements R1 and R2 in the rDNA units of Drosophila mercatorum: abnormal abdomen revisited.

H S Malik 1, T H Eickbush 1
PMCID: PMC1460499  PMID: 9927458

Abstract

R1 and R2 retrotransposable elements are stable components of the 28S rRNA genes of arthropods. While each retrotransposition event leads to incremental losses of rDNA unit expression, little is known about the selective consequences of these elements on the host genome. Previous reports suggested that in the abnormal abdomen (aa) phenotype of Drosophila mercatorum, high levels of rDNA insertions (R1) in conjunction with the under-replication locus (ur), enable the utilization of different ecological conditions via a population level shift to younger age. We have sequenced the R1 and R2 elements of D. mercatorum and show that the levels of R1- and R2-inserted rDNA units were inaccurately scored in the original studies of aa, leading to several misinterpretations. In particular, contrary to earlier reports, aa flies differentially underreplicate R1- and R2-inserted rDNA units, like other species of Drosophila. However, aa flies do not undergo the lower level of underreplication of their functional rDNA units (general underreplication) that is seen in wild-type strains. The lack of general underreplication is expected to confer a selective advantage and, thus, can be interpreted as an adaptation to overcome high levels of R1 and R2 insertions. These results allow us to reconcile some of the apparently contradictory effects of aa and the bobbed phenotype found in other species of Drosophila.

Full Text

The Full Text of this article is available as a PDF (377.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burke W. D., Calalang C. C., Eickbush T. H. The site-specific ribosomal insertion element type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme. Mol Cell Biol. 1987 Jun;7(6):2221–2230. doi: 10.1128/mcb.7.6.2221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burke W. D., Eickbush D. G., Xiong Y., Jakubczak J., Eickbush T. H. Sequence relationship of retrotransposable elements R1 and R2 within and between divergent insect species. Mol Biol Evol. 1993 Jan;10(1):163–185. doi: 10.1093/oxfordjournals.molbev.a039990. [DOI] [PubMed] [Google Scholar]
  3. Burke W. D., Malik H. S., Lathe W. C., 3rd, Eickbush T. H. Are retrotransposons long-term hitchhikers? Nature. 1998 Mar 12;392(6672):141–142. doi: 10.1038/32330. [DOI] [PubMed] [Google Scholar]
  4. Charlesworth B., Langley C. H. The population genetics of Drosophila transposable elements. Annu Rev Genet. 1989;23:251–287. doi: 10.1146/annurev.ge.23.120189.001343. [DOI] [PubMed] [Google Scholar]
  5. Charlesworth B., Sniegowski P., Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994 Sep 15;371(6494):215–220. doi: 10.1038/371215a0. [DOI] [PubMed] [Google Scholar]
  6. DeSalle R., Slightom J., Zimmer E. The molecular through ecological genetics of abnormal abdomen. II. Ribosomal DNA polymorphism is associated with the abnormal abdomen syndrome in Drosophila mercatorum. Genetics. 1986 Apr;112(4):861–875. doi: 10.1093/genetics/112.4.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DeSalle R., Templeton A. R. The molecular through ecological genetics of abnormal abdomen. III. Tissue-specific differential replication of ribosomal genes modulates the abnormal abdomen phenotype in Drosophila mercatorum. Genetics. 1986 Apr;112(4):877–886. doi: 10.1093/genetics/112.4.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dover G., Coen E. Springcleaning ribosomal DNA: a model for multigene evolution? Nature. 1981 Apr 30;290(5809):731–732. doi: 10.1038/290731a0. [DOI] [PubMed] [Google Scholar]
  9. Eickbush D. G., Eickbush T. H. Vertical transmission of the retrotransposable elements R1 and R2 during the evolution of the Drosophila melanogaster species subgroup. Genetics. 1995 Feb;139(2):671–684. doi: 10.1093/genetics/139.2.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Endow S. A., Glover D. M. Differential replication of ribosomal gene repeats in polytene nuclei of Drosophila. Cell. 1979 Jul;17(3):597–605. doi: 10.1016/0092-8674(79)90267-8. [DOI] [PubMed] [Google Scholar]
  11. Franz G., Kunz W. Intervening sequences in ribosomal RNA genes and bobbed phenotype in Drosophila hydei. Nature. 1981 Aug 13;292(5824):638–640. doi: 10.1038/292638a0. [DOI] [PubMed] [Google Scholar]
  12. George J. A., Burke W. D., Eickbush T. H. Analysis of the 5' junctions of R2 insertions with the 28S gene: implications for non-LTR retrotransposition. Genetics. 1996 Mar;142(3):853–863. doi: 10.1093/genetics/142.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hawley R. S., Marcus C. H. Recombinational controls of rDNA redundancy in Drosophila. Annu Rev Genet. 1989;23:87–120. doi: 10.1146/annurev.ge.23.120189.000511. [DOI] [PubMed] [Google Scholar]
  14. Hollocher H., Templeton A. R., DeSalle R., Johnston J. S. The molecular through ecological genetics of abnormal abdomen. IV. Components of genetic variation in a natural population of Drosophila mercatorum. Genetics. 1992 Feb;130(2):355–366. doi: 10.1093/genetics/130.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hollocher H., Templeton A. R. The molecular through ecological genetics of abnormal abdomen in Drosophila mercatorum. VI. The non-neutrality of the Y chromosome rDNA polymorphism. Genetics. 1994 Apr;136(4):1373–1384. doi: 10.1093/genetics/136.4.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jakubczak J. L., Burke W. D., Eickbush T. H. Retrotransposable elements R1 and R2 interrupt the rRNA genes of most insects. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3295–3299. doi: 10.1073/pnas.88.8.3295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jakubczak J. L., Xiong Y., Eickbush T. H. Type I (R1) and type II (R2) ribosomal DNA insertions of Drosophila melanogaster are retrotransposable elements closely related to those of Bombyx mori. J Mol Biol. 1990 Mar 5;212(1):37–52. doi: 10.1016/0022-2836(90)90303-4. [DOI] [PubMed] [Google Scholar]
  18. Jakubczak J. L., Zenni M. K., Woodruff R. C., Eickbush T. H. Turnover of R1 (type I) and R2 (type II) retrotransposable elements in the ribosomal DNA of Drosophila melanogaster. Genetics. 1992 May;131(1):129–142. doi: 10.1093/genetics/131.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jamrich M., Miller O. L., Jr The rare transcripts of interrupted rRNA genes in Drosophila melanogaster are processed or degraded during synthesis. EMBO J. 1984 Jul;3(7):1541–1545. doi: 10.1002/j.1460-2075.1984.tb02008.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lathe W. C., 3rd, Burke W. D., Eickbush D. G., Eickbush T. H. Evolutionary stability of the R1 retrotransposable element in the genus Drosophila. Mol Biol Evol. 1995 Nov;12(6):1094–1105. doi: 10.1093/oxfordjournals.molbev.a040283. [DOI] [PubMed] [Google Scholar]
  21. Lathe W. C., 3rd, Eickbush T. H. A single lineage of r2 retrotransposable elements is an active, evolutionarily stable component of the Drosophila rDNA locus. Mol Biol Evol. 1997 Dec;14(12):1232–1241. doi: 10.1093/oxfordjournals.molbev.a025732. [DOI] [PubMed] [Google Scholar]
  22. Luan D. D., Eickbush T. H. RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element. Mol Cell Biol. 1995 Jul;15(7):3882–3891. doi: 10.1128/mcb.15.7.3882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Luan D. D., Korman M. H., Jakubczak J. L., Eickbush T. H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. 1993 Feb 26;72(4):595–605. doi: 10.1016/0092-8674(93)90078-5. [DOI] [PubMed] [Google Scholar]
  24. Renkawitz-Pohl R., Kunz W. Underreplication of satellite dnas in polyploid ovarian tissue of Drosophila virilis. Chromosoma. 1975;49(4):375–382. doi: 10.1007/BF00285130. [DOI] [PubMed] [Google Scholar]
  25. Renkawitz R., Kunz W. Independent replication of the ribosomal RNA genes in the polytrophic-meroistic ovaries of Calliphora erythrocephala, Drosophila hydei, and Sarcophaga barbata. Chromosoma. 1975 Nov 24;53(2):131–140. doi: 10.1007/BF00333041. [DOI] [PubMed] [Google Scholar]
  26. Shermoen A. W., Kiefer B. I. Regulation in rDNA-deficient Drosophila melanogaster. Cell. 1975 Mar;4(3):275–280. doi: 10.1016/0092-8674(75)90176-2. [DOI] [PubMed] [Google Scholar]
  27. Spear B. B., Gall J. G. Independent control of ribosomal gene replication in polytene chromosomes of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1973 May;70(5):1359–1363. doi: 10.1073/pnas.70.5.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Templeton A. R., Carson H. L., Sing C. F. The population genetics of parthenogenetic strains of Drosophila mercatorium. II The capacity for parthenogenesis in a natural, bisexual population. Genetics. 1976 Mar 25;82(3):527–542. doi: 10.1093/genetics/82.3.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Templeton A. R., Crease T. J., Shah F. The molecular through ecological genetics of abnormal abdomen in Drosophila mercatorum. I. Basic genetics. Genetics. 1985 Dec;111(4):805–818. doi: 10.1093/genetics/111.4.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Templeton A. R., Hollocher H., Lawler S., Johnston J. S. Natural selection and ribosomal DNA in Drosophila. Genome. 1989;31(1):296–303. doi: 10.1139/g89-047. [DOI] [PubMed] [Google Scholar]
  31. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wellauer P. K., Dawid I. B. The structural organization of ribosomal DNA in Drosophila melanogaster. Cell. 1977 Feb;10(2):193–212. doi: 10.1016/0092-8674(77)90214-8. [DOI] [PubMed] [Google Scholar]
  33. Xiong Y. E., Eickbush T. H. Functional expression of a sequence-specific endonuclease encoded by the retrotransposon R2Bm. Cell. 1988 Oct 21;55(2):235–246. doi: 10.1016/0092-8674(88)90046-3. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES