Abstract
Phylogenetic analysis identified a highly conserved eight-base sequence (AAGGCTGA) within the 3'-untranslated region (UTR) of the Drosophila alcohol dehydrogenase gene, Adh. To examine the functional significance of this conserved motif, we performed in vitro deletion mutagenesis on the D. melanogaster Adh gene followed by P-element-mediated germline transformation. Deletion of all or part of the eight-base sequence leads to a twofold increase in in vivo ADH enzymatic activity. The increase in activity is temporally and spatially general and is the result of an underlying increase in Adh transcript. These results indicate that the conserved 3'-UTR motif plays a functional role in the negative regulation of Adh gene expression. The evolutionary significance of our results may be understood in the context of the amino acid change that produces the ADH-F allele and also leads to a twofold increase in ADH activity. While there is compelling evidence that the amino acid replacement has been a target of positive selection, the conservation of the 3'-UTR sequence suggests that it is under strong purifying selection. The selective difference between these two sequence changes, which have similar effects on ADH activity, may be explained by different metabolic costs associated with the increase in activity.
Full Text
The Full Text of this article is available as a PDF (129.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aquadro C. F., Desse S. F., Bland M. M., Langley C. H., Laurie-Ahlberg C. C. Molecular population genetics of the alcohol dehydrogenase gene region of Drosophila melanogaster. Genetics. 1986 Dec;114(4):1165–1190. doi: 10.1093/genetics/114.4.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ayala F. J., Barrio E., Kwiatowski J. Molecular clock or erratic evolution? A tale of two genes. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11729–11734. doi: 10.1073/pnas.93.21.11729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benyajati C., Spoerel N., Haymerle H., Ashburner M. The messenger RNA for alcohol dehydrogenase in Drosophila melanogaster differs in its 5' end in different developmental stages. Cell. 1983 May;33(1):125–133. doi: 10.1016/0092-8674(83)90341-0. [DOI] [PubMed] [Google Scholar]
- Benyajati C., Wang N., Reddy A., Weinberg E., Sofer W. Alcohol dehydrogenase in Drosophila: isolation and characterization of messenger RNA and cDNA clone. Nucleic Acids Res. 1980 Dec 11;8(23):5649–5667. doi: 10.1093/nar/8.23.5649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berry A., Kreitman M. Molecular analysis of an allozyme cline: alcohol dehydrogenase in Drosophila melanogaster on the east coast of North America. Genetics. 1993 Jul;134(3):869–893. doi: 10.1093/genetics/134.3.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bishop J. G., 3rd, Corces V. G. Expression of an activated ras gene causes developmental abnormalities in transgenic Drosophila melanogaster. Genes Dev. 1988 May;2(5):567–577. doi: 10.1101/gad.2.5.567. [DOI] [PubMed] [Google Scholar]
- Choudhary M., Laurie C. C. Use of in vitro mutagenesis to analyze the molecular basis of the difference in Adh expression associated with the allozyme polymorphism in Drosophila melanogaster. Genetics. 1991 Oct;129(2):481–488. doi: 10.1093/genetics/129.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- David J. R., Bocquet C., Arens M. F., Fouillet P. Biological role of alcohol dehydrogenase in the tolerance of Drosophila melanogaster to aliphatic alochols: utilization of an ADH-null mutant. Biochem Genet. 1976 Dec;14(11-12):989–997. doi: 10.1007/BF00485131. [DOI] [PubMed] [Google Scholar]
- Fletcher T. S., Ayala F. J., Thatcher D. R., Chambers G. K. Structural analysis of the ADHS electromorph of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5609–5612. doi: 10.1073/pnas.75.11.5609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geer B. W., McKechnie S. W., Langevin M. L. The effect of dietary ethanol on the composition of lipids of Drosophila melanogaster larvae. Biochem Genet. 1986 Feb;24(1-2):51–69. doi: 10.1007/BF00502978. [DOI] [PubMed] [Google Scholar]
- Goldberg D. A., Posakony J. W., Maniatis T. Correct developmental expression of a cloned alcohol dehydrogenase gene transduced into the Drosophila germ line. Cell. 1983 Aug;34(1):59–73. doi: 10.1016/0092-8674(83)90136-8. [DOI] [PubMed] [Google Scholar]
- Kirby D. A., Muse S. V., Stephan W. Maintenance of pre-mRNA secondary structure by epistatic selection. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9047–9051. doi: 10.1073/pnas.92.20.9047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kreitman M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature. 1983 Aug 4;304(5925):412–417. doi: 10.1038/304412a0. [DOI] [PubMed] [Google Scholar]
- Kwiatowski J., Krawczyk M., Jaworski M., Skarecky D., Ayala F. J. Erratic evolution of glycerol-3-phosphate dehydrogenase in Drosophila, Chymomyza, and Ceratitis. J Mol Evol. 1997 Jan;44(1):9–22. doi: 10.1007/pl00006126. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lai E. C., Posakony J. W. The Bearded box, a novel 3' UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression. Development. 1997 Dec;124(23):4847–4856. doi: 10.1242/dev.124.23.4847. [DOI] [PubMed] [Google Scholar]
- Laurie-Ahlberg C. C., Stam L. F. Use of P-element-mediated transformation to identify the molecular basis of naturally occurring variants affecting Adh expression in Drosophila melanogaster. Genetics. 1987 Jan;115(1):129–140. doi: 10.1093/genetics/115.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laurie C. C., Stam L. F. Quantitative analysis of RNA produced by slow and fast alleles of Adh in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5161–5165. doi: 10.1073/pnas.85.14.5161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laurie C. C., Stam L. F. The effect of an intronic polymorphism on alcohol dehydrogenase expression in Drosophila melanogaster. Genetics. 1994 Oct;138(2):379–385. doi: 10.1093/genetics/138.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Cam A., Legraverend C. Transcriptional repression, a novel function for 3' untranslated regions. Eur J Biochem. 1995 Aug 1;231(3):620–627. [PubMed] [Google Scholar]
- Leviten M. W., Lai E. C., Posakony J. W. The Drosophila gene Bearded encodes a novel small protein and shares 3' UTR sequence motifs with multiple Enhancer of split complex genes. Development. 1997 Oct;124(20):4039–4051. doi: 10.1242/dev.124.20.4039. [DOI] [PubMed] [Google Scholar]
- Maroni G. Genetic control of alcohol dehydrogenase levels in Drosophila. Biochem Genet. 1978 Jun;16(5-6):509–523. doi: 10.1007/BF00484215. [DOI] [PubMed] [Google Scholar]
- McDonough J., Deneris E. beta43': An enhancer displaying neural-restricted activity is located in the 3'-untranslated exon of the rat nicotinic acetylcholine receptor beta4 gene. J Neurosci. 1997 Apr 1;17(7):2273–2283. doi: 10.1523/JNEUROSCI.17-07-02273.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parsch J., Tanda S., Stephan W. Site-directed mutations reveal long-range compensatory interactions in the Adh gene of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):928–933. doi: 10.1073/pnas.94.3.928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patton J. S., Gomes X. V., Geyer P. K. Position-independent germline transformation in Drosophila using a cuticle pigmentation gene as a selectable marker. Nucleic Acids Res. 1992 Nov 11;20(21):5859–5860. doi: 10.1093/nar/20.21.5859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson H. M., Preston C. R., Phillis R. W., Johnson-Schlitz D. M., Benz W. K., Engels W. R. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics. 1988 Mar;118(3):461–470. doi: 10.1093/genetics/118.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
- Schaeffer S. W., Miller E. L. Estimates of linkage disequilibrium and the recombination parameter determined from segregating nucleotide sites in the alcohol dehydrogenase region of Drosophila pseudoobscura. Genetics. 1993 Oct;135(2):541–552. doi: 10.1093/genetics/135.2.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spradling A. C., Rubin G. M. Transposition of cloned P elements into Drosophila germ line chromosomes. Science. 1982 Oct 22;218(4570):341–347. doi: 10.1126/science.6289435. [DOI] [PubMed] [Google Scholar]
- Stam L. F., Laurie C. C. Molecular dissection of a major gene effect on a quantitative trait: the level of alcohol dehydrogenase expression in Drosophila melanogaster. Genetics. 1996 Dec;144(4):1559–1564. doi: 10.1093/genetics/144.4.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]