Abstract
Alternatives to the mutation-accumulation approach have been developed to characterize deleterious genomic mutations. However, they all depend on the assumption that the standing genetic variation in natural populations is solely due to mutation-selection (M-S) balance and therefore that overdominance does not contribute to heterosis. Despite tremendous efforts, the extent to which this assumption is valid is unknown. With different degrees of violation of the M-S balance assumption in large equilibrium populations, we investigated the statistical properties and the robustness of these alternative methods in the presence of overdominance. We found that for dominant mutations, estimates for U (genomic mutation rate) will be biased upward and those for h (mean dominance coefficient) and s (mean selection coefficient), biased downward when additional overdominant mutations are present. However, the degree of bias is generally moderate and depends largely on the magnitude of the contribution of overdominant mutations to heterosis or genetic variation. This renders the estimates of U and s not always biased under variable mutation effects that, when working alone, cause U and s to be underestimated. The contributions to heterosis and genetic variation from overdominant mutations are monotonic but not linearly proportional to each other. Our results not only provide a basis for the correct inference of deleterious mutation parameters from natural populations, but also alleviate the biggest concern in applying the new approaches, thus paving the way for reliably estimating properties of deleterious mutations.
Full Text
The Full Text of this article is available as a PDF (211.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrett S. C., Charlesworth D. Effects of a change in the level of inbreeding on the genetic load. Nature. 1991 Aug 8;352(6335):522–524. doi: 10.1038/352522a0. [DOI] [PubMed] [Google Scholar]
- Bürger R., Hofbauer J. Mutation load and mutation-selection-balance in quantitative genetic traits. J Math Biol. 1994;32(3):193–218. doi: 10.1007/BF00163878. [DOI] [PubMed] [Google Scholar]
- Caballero A., Keightley P. D. A pleiotropic nonadditive model of variation in quantitative traits. Genetics. 1994 Nov;138(3):883–900. doi: 10.1093/genetics/138.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caballero A., Keightley P. D., Turelli M. Average dominance for polygenes: drawbacks of regression estimates. Genetics. 1997 Nov;147(3):1487–1490. doi: 10.1093/genetics/147.3.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Craddock N., Khodel V., Van Eerdewegh P., Reich T. Mathematical limits of multilocus models: the genetic transmission of bipolar disorder. Am J Hum Genet. 1995 Sep;57(3):690–702. [PMC free article] [PubMed] [Google Scholar]
- Crow J. F. How much do we know about spontaneous human mutation rates? Environ Mol Mutagen. 1993;21(2):122–129. doi: 10.1002/em.2850210205. [DOI] [PubMed] [Google Scholar]
- Deng H. W. Estimating within-locus nonadditive coefficient and discriminating dominance versus overdominance as the genetic cause of heterosis. Genetics. 1998 Apr;148(4):2003–2014. doi: 10.1093/genetics/148.4.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deng H. W., Fu Y. X., Lynch M. Inferring the major genomic mode of dominance and overdominance. Genetica. 1998;102-103(1-6):559–567. [PubMed] [Google Scholar]
- Deng H. W., Lynch M. Estimation of deleterious-mutation parameters in natural populations. Genetics. 1996 Sep;144(1):349–360. doi: 10.1093/genetics/144.1.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drake J. W., Charlesworth B., Charlesworth D., Crow J. F. Rates of spontaneous mutation. Genetics. 1998 Apr;148(4):1667–1686. doi: 10.1093/genetics/148.4.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fu Y. B., Ritland K. Marker-based inferences about epistasis for genes influencing inbreeding depression. Genetics. 1996 Sep;144(1):339–348. doi: 10.1093/genetics/144.1.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houle D. Allozyme-associated heterosis in Drosophila melanogaster. Genetics. 1989 Dec;123(4):789–801. doi: 10.1093/genetics/123.4.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houle D., Morikawa B., Lynch M. Comparing mutational variabilities. Genetics. 1996 Jul;143(3):1467–1483. doi: 10.1093/genetics/143.3.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudson R. R., Kaplan N. L. Deleterious background selection with recombination. Genetics. 1995 Dec;141(4):1605–1617. doi: 10.1093/genetics/141.4.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnston M. O., Schoen D. J. Mutation rates and dominance levels of genes affecting total fitness in two angiosperm species. Science. 1995 Jan 13;267(5195):226–229. doi: 10.1126/science.267.5195.226. [DOI] [PubMed] [Google Scholar]
- KIMURA M., MARUYAMA T., CROW J. F. THE MUTATION LOAD IN SMALL POPULATIONS. Genetics. 1963 Oct;48:1303–1312. doi: 10.1093/genetics/48.10.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kacser H., Burns J. A. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. doi: 10.1093/genetics/97.3-4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keightley P. D. Nature of deleterious mutation load in Drosophila. Genetics. 1996 Dec;144(4):1993–1999. doi: 10.1093/genetics/144.4.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keightley P. D. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics. 1994 Dec;138(4):1315–1322. doi: 10.1093/genetics/138.4.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kondrashov A. S., Crow J. F. Haploidy or diploidy: which is better? Nature. 1991 May 23;351(6324):314–315. doi: 10.1038/351314a0. [DOI] [PubMed] [Google Scholar]
- Kondrashov A. S. Deleterious mutations and the evolution of sexual reproduction. Nature. 1988 Dec 1;336(6198):435–440. doi: 10.1038/336435a0. [DOI] [PubMed] [Google Scholar]
- Kondrashov A. S. Deleterious mutations as an evolutionary factor. II. Facultative apomixis and selfing. Genetics. 1985 Nov;111(3):635–653. doi: 10.1093/genetics/111.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lynch M. The rate of polygenic mutation. Genet Res. 1988 Apr;51(2):137–148. doi: 10.1017/s0016672300024150. [DOI] [PubMed] [Google Scholar]
- Mackay T. F., Lyman R. F., Jackson M. S. Effects of P element insertions on quantitative traits in Drosophila melanogaster. Genetics. 1992 Feb;130(2):315–332. doi: 10.1093/genetics/130.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morton N. E., Crow J. F., Muller H. J. AN ESTIMATE OF THE MUTATIONAL DAMAGE IN MAN FROM DATA ON CONSANGUINEOUS MARRIAGES. Proc Natl Acad Sci U S A. 1956 Nov;42(11):855–863. doi: 10.1073/pnas.42.11.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mukai T., Chigusa S. I., Mettler L. E., Crow J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics. 1972 Oct;72(2):335–355. doi: 10.1093/genetics/72.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peck J. R., Eyre-Walker A. Evolutionary genetics. The muddle about mutations. Nature. 1997 May 8;387(6629):135–136. doi: 10.1038/387135a0. [DOI] [PubMed] [Google Scholar]
- Simmons M. J., Crow J. F. Mutations affecting fitness in Drosophila populations. Annu Rev Genet. 1977;11:49–78. doi: 10.1146/annurev.ge.11.120177.000405. [DOI] [PubMed] [Google Scholar]
- Stuber C. W., Lincoln S. E., Wolff D. W., Helentjaris T., Lander E. S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics. 1992 Nov;132(3):823–839. doi: 10.1093/genetics/132.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace B. One selectionist's perspective. Q Rev Biol. 1989 Jun;64(2):127–145. doi: 10.1086/416236. [DOI] [PubMed] [Google Scholar]