Abstract
The hydration in the minor groove of double stranded DNA fragments containing the sequences 5'-dTTAAT, 5'-dTTAAC, 5'-dTTAAA and 5'-dTTAAG was investigated by studying the decanucleotide duplex d(GCATTAATGC)2 and the singly cross-linked decameric duplexes 5'-d(GCATTAACGC)-3'-linker-5'-d(GCGTTAATGC)-3' and 5'-d(GCCTTAAAGC)-3'-linker-5'-d(GCTTTAAGGC)-3' by NMR spectroscopy. The linker employed consisted of six ethyleneglycol units. The hydration water was detected by NOEs between water and DNA protons in NOESY and ROESY spectra. NOE-NOESY and ROE-NOESY experiments were used to filter out intense exchange cross-peaks and to observe water-DNA NOEs with sugar 1' protons. Positive NOESY cross-peaks corresponding to residence times longer than approximately 0.5 ns were observed for 2H resonances of the central adenine residues in the duplex containing the sequences 5'-dTTAAT and 5'-dTTAAC, but not in the duplex containing the sequences 5'-dTTAAA and 5'-dTTAAG. In all nucleotide sequences studied here, the hydration water in the minor groove is significantly more mobile at both ends of the AT-rich inner segments, as indicated by very weak or negative water-A 2H NOESY cross-peaks. No positive NOESY cross-peaks were detected with the G 1'H and C 1'H resonances, indicating that the minor groove hydration water near GC base pairs is kinetically less restrained than for AT-rich DNA segments. Kinetically stabilized minor groove hydration water was manifested by positive NOESY cross-peaks with both A 2H and 1'H signals of the 5'-dTTAA segment in d(GCATTAATGC)2. More rigid hydration water was detected near T4 in d(GCATTAATGC)2 as compared with 5'-d(GCATTAACGC)-3'-linker-5'-d(GCGTTAATGC)-3', although the sequences differ only in a single base pair. This illustrates the high sensitivity of water-DNA NOEs towards small conformational differences.
Full Text
The Full Text of this article is available as a PDF (107.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altmann S., Labhardt A. M., Bur D., Lehmann C., Bannwarth W., Billeter M., Wüthrich K., Leupin W. NMR studies of DNA duplexes singly cross-linked by different synthetic linkers. Nucleic Acids Res. 1995 Dec 11;23(23):4827–4835. doi: 10.1093/nar/23.23.4827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denisov V. P., Halle B. Hydrogen exchange and protein hydration: the deuteron spin relaxation dispersions of bovine pancreatic trypsin inhibitor and ubiquitin. J Mol Biol. 1995 Feb 3;245(5):698–709. doi: 10.1006/jmbi.1994.0056. [DOI] [PubMed] [Google Scholar]
- Denisov V. P., Halle B., Peters J., Hörlein H. D. Residence times of the buried water molecules in bovine pancreatic trypsin inhibitor and its G36S mutant. Biochemistry. 1995 Jul 18;34(28):9046–9051. doi: 10.1021/bi00028a013. [DOI] [PubMed] [Google Scholar]
- Denisov V. P., Halle B. Protein hydration dynamics in aqueous solution: a comparison of bovine pancreatic trypsin inhibitor and ubiquitin by oxygen-17 spin relaxation dispersion. J Mol Biol. 1995 Feb 3;245(5):682–697. doi: 10.1006/jmbi.1994.0055. [DOI] [PubMed] [Google Scholar]
- Drew H. R., Dickerson R. E. Structure of a B-DNA dodecamer. III. Geometry of hydration. J Mol Biol. 1981 Sep 25;151(3):535–556. doi: 10.1016/0022-2836(81)90009-7. [DOI] [PubMed] [Google Scholar]
- Eisenstein M., Shakked Z. Hydration patterns and intermolecular interactions in A-DNA crystal structures. Implications for DNA recognition. J Mol Biol. 1995 May 5;248(3):662–678. doi: 10.1006/jmbi.1995.0250. [DOI] [PubMed] [Google Scholar]
- Fawthrop S. A., Yang J. C., Fisher J. Structural and dynamic studies of a non-self-complementary dodecamer DNA duplex. Nucleic Acids Res. 1993 Oct 25;21(21):4860–4866. doi: 10.1093/nar/21.21.4860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodsell D. S., Kaczor-Grzeskowiak M., Dickerson R. E. The crystal structure of C-C-A-T-T-A-A-T-G-G. Implications for bending of B-DNA at T-A steps. J Mol Biol. 1994 May 27;239(1):79–96. doi: 10.1006/jmbi.1994.1352. [DOI] [PubMed] [Google Scholar]
- Guéron M., Kochoyan M., Leroy J. L. A single mode of DNA base-pair opening drives imino proton exchange. Nature. 1987 Jul 2;328(6125):89–92. doi: 10.1038/328089a0. [DOI] [PubMed] [Google Scholar]
- Kochoyan M., Leroy J. L. Hydration and solution structure of nucleic acids. Curr Opin Struct Biol. 1995 Jun;5(3):329–333. doi: 10.1016/0959-440x(95)80094-8. [DOI] [PubMed] [Google Scholar]
- Leijon M., Zdunek J., Fritzsche H., Sklenar H., Gräslund A. NMR studies and restrained-molecular-dynamics calculations of a long A+T-rich stretch in DNA. Effects of phosphate charge and solvent approximations. Eur J Biochem. 1995 Dec 15;234(3):832–842. doi: 10.1111/j.1432-1033.1995.832_a.x. [DOI] [PubMed] [Google Scholar]
- Leroy J. L., Broseta D., Guéron M. Proton exchange and base-pair kinetics of poly(rA).poly(rU) and poly(rI).poly(rC). J Mol Biol. 1985 Jul 5;184(1):165–178. doi: 10.1016/0022-2836(85)90050-6. [DOI] [PubMed] [Google Scholar]
- Liepinsh E., Leupin W., Otting G. Hydration of DNA in aqueous solution: NMR evidence for a kinetic destabilization of the minor groove hydration of d-(TTAA)2 versus d-(AATT)2 segments. Nucleic Acids Res. 1994 Jun 25;22(12):2249–2254. doi: 10.1093/nar/22.12.2249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liepinsh E., Otting G. Proton exchange rates from amino acid side chains--implications for image contrast. Magn Reson Med. 1996 Jan;35(1):30–42. doi: 10.1002/mrm.1910350106. [DOI] [PubMed] [Google Scholar]
- Liepinsh E., Otting G., Wüthrich K. NMR observation of individual molecules of hydration water bound to DNA duplexes: direct evidence for a spine of hydration water present in aqueous solution. Nucleic Acids Res. 1992 Dec 25;20(24):6549–6553. doi: 10.1093/nar/20.24.6549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maltseva T. V., Agback P., Chattopadhyaya J. How much hydration is necessary for the stabilisation of DNA-duplex? Nucleic Acids Res. 1993 Sep 11;21(18):4246–4252. doi: 10.1093/nar/21.18.4246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Otting G., Liepinsh E., Farmer B. T., 2nd, Wüthrich K. Protein hydration studied with homonuclear 3D 1H NMR experiments. J Biomol NMR. 1991 Jul;1(2):209–215. doi: 10.1007/BF01877232. [DOI] [PubMed] [Google Scholar]
- Otting G., Liepinsh E., Wüthrich K. Protein hydration in aqueous solution. Science. 1991 Nov 15;254(5034):974–980. doi: 10.1126/science.1948083. [DOI] [PubMed] [Google Scholar]
- Quintana J. R., Grzeskowiak K., Yanagi K., Dickerson R. E. Structure of a B-DNA decamer with a central T-A step: C-G-A-T-T-A-A-T-C-G. J Mol Biol. 1992 May 20;225(2):379–395. doi: 10.1016/0022-2836(92)90928-d. [DOI] [PubMed] [Google Scholar]
- Umrania Y., Nikjoo H., Goodfellow J. M. A knowledge-based model of DNA hydration. Int J Radiat Biol. 1995 Feb;67(2):145–152. doi: 10.1080/09553009514550181. [DOI] [PubMed] [Google Scholar]
- Westhof E. Water: an integral part of nucleic acid structure. Annu Rev Biophys Biophys Chem. 1988;17:125–144. doi: 10.1146/annurev.bb.17.060188.001013. [DOI] [PubMed] [Google Scholar]